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Diffusion-Limited Aggregation with Polygon Particles∗
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Abstract Diffusion-limited aggregation (DLA) assumes that particles perform pure random walk at a finite tem-
perature and aggregate when they come close enough and stick together. Although it is well known that DLA in two
dimensions results in a ramified fractal structure, how the particle shape influences the formed morphology is still un-
clear. In this work, we perform the off-lattice two-dimensional DLA simulations with different particle shapes of triangle,
quadrangle, pentagon, hexagon, and octagon, respectively, and compare with the results for circular particles. Our
results indicate that different particle shapes only change the local structure, but have no effects on the global structure
of the formed fractal cluster. The local compactness decreases as the number of polygon edges increases.
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1 Introduction

Various aggregation mechanisms[1] have been proposed

to theoretically investigate disordered growth under non-

equilibrium conditions, such as nanoparticle and colloidal

aggregation,[2−5] among which the diffusion-limited ag-

gregation (DLA) has been intensively studied by many

researchers.[6−11] The original DLA model proposed by

Witten and Sander[6] performs a random simulation at a

finite temperature on a two-dimensional square lattice. In

this model a particle is initially fixed at the origin, and

more particles are then released one by one and perform

random walk in the space until they become close enough

and stick on the central cluster. The above DLA pro-

cedure generates a statistical self-similar structure whose

scale-invariant properties can be described by the fractal

geometry.[12−14] Power law scaling of the two-point corre-

lation function was discovered in the initial work by Wit-

ten and Sander[6] and the fractal dimension of a cluster

formed on a two-dimensional lattice is 5/3 regardless of

the lattice geometry.[1]

DLA is a successful abstract model for qualitatively

understanding irreversible aggregation of ramified frac-

tal structures observed in many experiments.[15−19] How-

ever, there still exist many other experimental observa-

tions which beyond the explanation given by DLA. For

instance, aggregation can result in regular dendrite fractal

structures, such as magnetic α-Fe2O3,
[20] fractal assembly

of copper nanoparticles,[21] and the snowflake structure

in nature,[22] which may have direct connections with the

experimental observations[19,23] that particle shape plays

an important role in the formation of those structures.

Consequently, some simulations[23−25] have studied the ef-

fect of particle anisotropy on DLA morphology. Liu et

al.
[23] studied the influence of the monomer anisotropy to

the DLA structure and they concluded that anisotropic

monomers still lead to fractal patterns. Mohraz et al.[24]

investigated colloidal rod aggregation in three dimensions

by both experiments and simulations and found that the

fractal dimension increases with increasing rod aspect ra-

tio. Menshutin and Shchur[25] found that different de-

grees of monomer anisotropy result in clusters with differ-

ent fractal dimensions and the noise-reduction level can

change the morphology of the clusters. Nevertheless, no

studies have been done to investigate the influence of par-

ticle shape to the formed morphology of DLA.

In this work, we perform the two-dimensional off-

lattice DLA simulations with different particle shapes of

triangle, quadrangle, pentagon, hexagon, and octagon, re-

spectively, and analyze the local and global properties of

the finally formed fractal structures, and compare with the

results for circular particles. Our results indicate that dif-

ferent polygon particles lead to different local structures,

but they have negligible effect on the global behavior of

the fractal structure. In addition, the local compactness

decreases as the number of polygon edges increases. The

paper is organized as follows: the simulation and analysis

methods are described in Sec. 2, the results are shown in

Sec. 3, followed by conclusions given in Sec. 4.

2 Methods

In this section, we describe our DLA simulation

method, the global structure analysis methods, the skele-

ton algorithm identifying the main branches of fractal
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structure, and the orientational order parameter calcu-

lation characterizing the local structure.

2.1 Simulation Method

Our two-dimensional DLA simulations with circular

particles are the same as the original one by Witten and

Sander[6] except that we perform off-lattice instead of

on-lattice simulations. Additional simulations were con-

ducted with one of the five polygons as the particle shape:

triangle, quadrangle, pentagon, hexagon, and octagon.

The radius of the circle is a and all the polygons are reg-

ular ones whose circumscribed circle has the same radius

of a.

In all simulations, a seed particle is initially fixed at

the origin. At each step, a free particle is released at a

random position with a distance d = df + d0 from the

seed particle, where df is the distance between the seed

particle and the outer-most particle on the cluster and d0

is the distance between the free particle and the outer-

most particle on the cluster. The released free particle is

allowed to translate in any directions with a random dis-

placement generated from a uniform distribution [−dt, dt]

and to rotate with a random angle generated from a uni-

form distribution [−δr, δr].

After each movement, the distance dn between the free

particle and the nearest particle on the cluster is calcu-

lated. The free particle stops moving only if dn is smaller

than a critical distance dc, and in the circular case, its

position is adjusted so that its center has a distance of

2a from the center of the nearest particle. For polygons,

the orientation is also adjusted along with the distance so

that its edge overlaps with the closest edge of the nearest

particle. After the free particle sticks on the cluster, a new

free particle is released and the above procedure repeats.

The distance d0 between an outer-most particle on the

cluster and the initial position of a released particle is re-

lated to the particle concentration of a real system. The

cutoff dc in the simulation corresponds to the effective

range of the adhesive interaction between particles. The

amplitudes of dt and δr reflect the system temperature.

The periodic boundary condition[26] was applied to avoid

the escape of particles from the simulation space, and the

neighbor list algorithm[26] was adopted to accelerate the

simulations. In this work, we set a = 1, dc = 3, dt = 0.5,

δr = 0.5 in radian, the simulation box to be a square with

the side length L = 1000, and d0 = 100 to make sure

that the DLA process is in a low concentration condition.

Nine independent runs have been performed and each run

contains M = 10 000 particles.

2.2 Fractal Dimension

Historically, the fractal dimension of DLA was initially

evaluated by Witten and Sander[6] through the radial dis-

tribution function (RDF) g(r) of the cluster. According

to the statistical self-similar property of a DLA cluster,

the RDF has the form g(r) ∝ rDf−D where Df is the

fractal dimension of the cluster and D is the dimension

of the Euclidean space in which the cluster is embedded.

Later on, most experiments and simulations have utilized

a more convenient relation between the number of par-

ticles and the distance from the origin to determine the

fractal dimension Df .[27] The number N(l) of particles in-

side a circle with radius l and centered at the origin can

be written as[28−29]

N(l) = k0 × (l/a)Df , (1)

where the prefactor k0, related to the lacunarity of the

cluster,[30] is different for clusters formed by different

aggregation mechanisms.[29] Oh and Sorensen[29] argued

that the relation is valid only when l is larger than a criti-

cal length lc ∼ 10a. According to Eq. (1), a fractal cluster

with a larger Df has more particles within the same radius

from the origin, so the fractal dimension Df can be used

to characterize the global compactness of a cluster. The

prefactor k0 can be used to characterize the local compact-

ness of a cluster, as illustrated by our later local structure

analysis.

2.3 Skeleton Algorithm

The skeleton of a cluster can be computationally iden-

tified to study its large scale properties,[31] and from the

skeleton of a cluster we can easily obtain the number of

main branches nb. The main branches are those branches

whose length, which is the number of particles from the

tip of the branch to the origin, is larger than a critical

length Lc, which is comparable to the cluster size.

In a cluster, there exist many branches whose length is

comparable to the cluster size, but not all those branches

are intrinsically different because some of them share lots

of particles and only differ in a few particles. If the num-

ber of shared particles exceeds a critical value Sc, all these

branches are regarded as in the same main-branch class

and only one of them is chosen to represent this class. Ac-

cording to the algorithm developed by Schwarzer et al.[31]

for the DLA cluster growth process, there exists a parent-

child relation between two neighbor particles, in which the

particle joining the cluster later is called “child” and the

particle joining the cluster earlier is called “parent”. By

applying this relation repeatedly we can identify all the

branches from a tip particle to the seed particle at the

origin. After all branches of the cluster are identified, we

can obtain the main branches of the cluster as follows: i)

the branches whose length is larger than a critical branch

length Lc are picked up from all the tip branches; ii) the

similarity S, defined as the number of particles shared by

two branches, are calculated for each pair of branches; iii)

the branches with S larger than a critical similarity Sc

can be considered as belonging to the same main-branch
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class and only one of them is chosen randomly to rep-

resent this class. The skeletons obtained with the above

algorithm for the DLA clusters with different polygon par-

ticles are drawn in Fig. 1. We can see that the selected

main branches are not necessarily the longest in a main-

branch class since they were randomly chosen.

Fig. 1 (Color online) DLA clusters with different polygon particles of (a) triangle, (b) quadrangle, (c) pentagon, (d)
hexagon, (e) octagon, and (f) circle. The red lines depict the calculated skeletons with Lc = 200 and Sc = 100.

With the main branches of the cluster determined, we

then calculate the angle θ between two neighboring main

branches and the direction of each main branch is deter-

mined by fitting the main branch with a straight line. The

distribution of angle θ quantifies the rotational symmetry

of the skeleton. The direction of the fitted straight line

is mainly determined by the particles shared by all the

branches in the same class, so the random selection of the

main branches does not influence noticeably the calculated

rotational symmetry.

2.4 Orientational Order Parameter

In contrast to the fractal dimension defined to quantify

the global structure, the orientational order parameter is

used to characterize the local symmetry of a DLA clus-

ter. The n-th orientational order parameter Φn is defined

as[32]

Φn =
1

Nt

Nt∑

i=1

1

zi

zi∑

j=1

e inθij , (2)

where Nt is the total number of particles in the cluster,

zi is the number of nearest neighbors of particle i, and θij

is the angle of the vector ~rij from particle i to particle

j with respect to a fixed vector ~a0, which was chosen in

our calculation to be the unit vector parallel to the y axis.

According to the definition, Φn equals to 1 if the local
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structure has a perfect n-fold symmetry. To observe the

change of the orientational symmetry with respect to the

length scale, we extend the definition of the orientational

order parameter to be distance-dependent:

Φn(r) =
1

Nt

Nt∑

i=1

1

z′i

z′

i∑

j=1

e inθij . (3)

Equation (3) only differs from Eq. (2) in the number of

particles in the second sum z′i, which is now over the par-

ticles in the range rij < r, rather than all the nearest

particles. With the extended orientational order parame-

ter, we can analyze the cluster geometry at different length

scales.

3 Results and Discussion

3.1 Fractal Dimension

In this section, we present our calculation of the frac-

tal dimensions for the DLA clusters formed by different

polygon particles through the relation between N(l) and

l defined in Eq. (1). The particle numbers N(l) versus

the normalized radius from the origin l/a are shown in a

ln-ln plot in Fig. 2 with only the linear part ranging from

25a to 148a. All the lines in Fig. 2 are parallel to each

other and the interceptions of these lines decrease with in-

creasing number of particle edges. According to Eq. (1),

the slopes of these lines correspond to the fractal dimen-

sions of the clusters and the interceptions correspond to

the prefactors k0. The fitted fractal dimensions and their

standard deviations are listed in Table 1. We can see from

both Fig. 2 and Table 1 that the clusters formed by differ-

ent polygon particles have similar fractal dimensions but

different prefactors.

Fig. 2 (Color online) Ln-ln plot of the number of parti-
cles N as a function of the normalized distance l/a from
the origin.

In Table 1, the DLA clusters with triangle, quadran-

gle, and hexagon particles have the same fractal dimen-

sion of about 1.69, consistent with the fractal dimension of

5/3 for the on-lattice simulations performed on a triangle,

square, or honeycomb lattice.[1] Furthermore, our results

show that other particle shapes of pentagon, octagon, and

circle, which have no corresponding lattice structures, also

have similar fractal dimensions. This result indicates that

the shape of particles has no noticeable influences on the

global structure of a two-dimensional DLA cluster, but

influences significantly the prefactor k0 defined in Eq. (1),

which characterizes the local compactness of the cluster.

The prefactor k0 will be studied in detail in Subsec. 3.4.

Table 1 Fractal dimensions Df and their stan-
dard deviations σ.

Particle Df σ

triangle 1.67 0.04

quadrangle 1.69 0.07

pentagon 1.69 0.07

hexagon 1.69 0.04

octagon 1.75 0.08

circle 1.73 0.07

3.2 Cluster Skeleton

As described by Schwarzer et al.,[31] the number of

main branches nb obtained by the skeleton algorithm is

also an important property characterizing the global struc-

ture of the cluster. They have also shown that, for the

DLA cluster with circular particles in two dimensions,

the number of main branches takes a constant value of

nb = 7.5 ± 1.5, independent of the cluster size. In this

work, we obtain the average values of nb for triangle,

quadrangle, pentagon, hexagon, octagon, and circle, re-

spectively, as listed in Table 2, which are all close to the

value 7.5 ± 1.5 reported in Ref. [31].

Table 2 Number of main branches nb and their
standard deviations σ.

Particle nb σ

triangle 6.89 1.05

quadrangle 6.22 1.09

pentagon 6.89 1.05

hexagon 6.75 1.28

octagon 7.25 0.71

circle 6.78 0.97

Schwarzer et al.[31] have shown that, in a two-

dimensional DLA, the increasing rate of free space is the

same as the increasing rate of space screened by the dan-

gling branches aside the main branches, so the number of

main branches is a constant during two-dimensional ag-

gregation. Consistently, our calculated skeletons shown in

Fig. 1 have similar structures for different polygon parti-

cles. The distribution of angle θ between two neighboring

main branches was then calculated to characterize the ro-

tational symmetry of the skeleton. Figure 3 indicates that

the distributions of angle θ are similar for all the clusters

formed by various polygon particles, and the average an-

gle values are listed in Table 3. All these results indicate

that the particle shape has no effect on the skeleton of
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DLA cluster, neither on the number nor on the structure

of the main branches.

Fig. 3 (Color online) Distributions of angle θ between
two neighboring main branches in the skeletons of the
DLA clusters with various particle shapes.

Table 3 Angle θ between two neighboring main
branches and their standard deviations σ.

Particle θ σ

triangle 0.91 0.40

quadrangle 1.01 0.46

pentagon 0.91 0.44

hexagon 0.93 0.43

octagon 0.87 0.37

circle 0.93 0.40

3.3 Orientational Order Parameter

The local structure of the DLA cluster is important

for studying the effect of different physical conditions on

the growth process. Mandelbrot[33] studied in detail the

lacunarity distribution of cluster, which is related to the

compactness of the cluster, and found that the lacunarity

distribution is different at different length scales. In our

work, the orientational order parameter was calculated to

quantify the local structure of the DLA cluster. We calcu-

lated with Eq. (3) six orientational order parameters:[32]

Φ3, Φ4, Φ5, Φ6, Φ8, and Φ10 as a function of distance for

all simulations. The order parameters Φn as a function of

distance r are shown in Fig. 4.

As can be seen from Fig. 4, the value at the smallest

r of each curve for the n-th orientational order parame-

ter is always 1 for a polygon with the n-fold symmetry

because the nearest neighbors of a particle are always ar-

ranged with the orientation determined by the polygon

shape. All figures in Fig. 4 indicate that, at the length

scale a < l < 5a, the orientational symmetry is apparently

different for the clusters formed by different polygons, but

at the length scale l > 10a, all clusters have the same

isotropic orientational symmetry. The local structure of a

cluster is determined by the competition between the ran-

domness due to diffusion and the orientational symmetry

due to polygon shape around a particle. The influence of

polygon shape on a cluster’s structure decreases rapidly

with increasing distance. As shown in Fig. 4, when l < 5a,

the particle alignment is mainly determined by the particle

geometry; when a DLA cluster is growing, the number of

new growth sites which can accept new particles increase

exponentially and distribute isotropically around the par-

ticle at the origin, so when the length scale l > 10a, the

randomness due to diffusion dominates and the cluster

structure is independent of the particle geometry.

3.4 Local Compactness and Prefactor

The above results for orientational order parameters

indicate that the particle shape only affects the local struc-

ture of the cluster, and in Fig. 2 it is shown that the pref-

actors k0 are different for different particle shapes. There-

fore, there should exist a direct relation between the local

structure and the prefactor k0. According to the origi-

nal definition of fractal structure,[1] the fractal dimension

Df is calculated by measuring the volume of fractal struc-

tures embedded in a D-dimensional Euclidean space. The

volume of a fractal structure is obtained by counting the

number M(r) of balls with radius r needed to cover the

fractal structure. For an ideal fractal structure, the self-

similarity is satisfied in all the length scale,[1] so the num-

ber of counting balls with radii r1 and r2, respectively,

should satisfy the following relation

M(r2) = M(r1) × (r1/r2)
Df , r1 > r2 . (4)

Form Eq. (4) we can define the average number of balls

with radius r2 in a ball with radius r1 as

M(r2; r1) =
M(r2)

M(r1)
= (r1/r2)

Df , r1 > r2 . (5)

The above relation can be easily extended recursively to

the case with three radii

M(r3; r1) = M(r2; r1) × M(r3; r2), r1 > r2 > r3 . (6)

The quantity M(a; l) is equivalent to N(l) defined in

Eq. (1). A detailed study by Oh and Sorensen[29] con-

cludes that the self-similar relation does not satisfy at all

length scales, rather there exists a critical length scale of

about 10a, when l > 10a, the DLA cluster has different

self-similar property for different aggregation kinetics, but

no differences were found for l < 10a. Recently, Heinson

et al.[28] studied the inertia tensor of many different fractal

clusters and pointed out that the prefactor k0 is related

to the cluster’s morphology. In addition, our results for

the orientational order parameter indicate that the parti-

cle shape only affects the cluster structure at finite length

scales. These results suggest that there should exist a cut-

off distance lc for the recursive relation in Eq. (6), and the

relation between the number of particles and the distance

from the origin can be written as

N(l) = N(lc) × M(lc; l) = N(lc) × (l/lc)
Df , (7)
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where N(l) and N(lc) are the numbers of particles within

radii l and lc, respectively, as defined in Eq. (1). Com-

pared with Eq. (1), we obtain the relation between k0 and

N(lc) as

k0 = N(lc) × aDf /l
Df
c . (8)

By fitting the simulation results, we found that Eq. (8)

is roughly satisfied for all cases when lc = 5a. The data

of ln(N(lc = 5a) × aDf /l
Df
c ) and ln(k0) are compared in

Table 4. The prefactor k0 for each case was determined

by the linear fitting of N(l) vs. l averaged over nine inde-

pendent simulations. It is clear that k0 corresponds to the

local compactness of the cluster when l < 5a and the lo-

cal compactness decreases as the number of polygon edges

increases. These results are in agreement with Heinson et

al.’s conclusion[28] that k0 characterizes the anisotropy of

the cluster which only exhibits in local structures.

Table 4 Prefactor values for the cluster with various
particle shapes.

Particle ln(N(lc = 5a) × aDf /l
Df
c ) ln(k0)

triangle 0.312 0.464

quadrangle −0.233 −0.114

pentagon −0.326 −0.335

hexagon −0.465 −0.398

octagon −0.738 −0.769

circle −0.79 −0.82

Fig. 4 (Color online) Orientational order parameters with different orders versus radius r for the clusters formed by
particles with various shapes.(a) Three-fold, (b) four-fold, (c) five-fold, (d) six-fold, (e) eight-fold, and (f) ten-fold.

4 Conclusion

In conclusion, we have done a series of two-dimensional

off-lattice DLA simulations with particle shapes of differ-

ent polygons, and the global and local structures of the

clusters have been studied in detail. By analyzing the

fractal dimension, we conclude that the geometry of the

particles has no effects on the global structure of cluster.

We have also shown that the DLA clusters formed by dif-
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ferent polygon particles have the same number of main

branches and the same skeleton symmetry. The results

of the extended orientational order parameters show that

the particle shape influences the local structure of the clus-

ters at a finite length scale, but the effects decay quickly

at larger length scales. The prefactor connecting the num-

ber of particles and the radius from the origin quantifies

the local compactness of the DLA clusters, and our results

for the prefactor indicate that the local compactness de-

creases as the number of polygon edges increases. There-

fore, we conclude that the particle shape only affects the

local structure of a two-dimensional DLA cluster, but has

no effects on its global structure.
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