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Jarzynski matrix equality: Calculating the free-energy difference by nonequilibrium simulations
with an arbitrary initial distribution
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The Jarzynski equality (JE) method, which relates the work of a nonequilibrium process to the free-energy
difference between its initial and final states, provides an efficient way to calculate free energies of thermodynamic
systems in simulations or experiments. However, more extensive applications of the JE are hindered by the
requirement that the initial state must be in equilibrium. In this work we extend the JE method to be the Jarzynski
matrix equality (JME) method, which relates the work of trajectories connecting metastable conformational
regions to their local free energies, and thus we can estimate the free energy from the nonequilibrium trajectories
starting from an almost arbitrary initial distribution. We then apply the JME to toy models, Lennard-Jones fluids,
and polymer chain models, demonstrating its efficiency in free-energy calculations with satisfactory accuracy.
The JME extends the applicability of the nonequilibrium methods to complex systems whose initial equilibrium
states are difficult to reach.
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I. INTRODUCTION

Over the past two decades, important progress in nonequi-
librium statistical physics has led to the development of fluctu-
ation theorems [1–3] and, in particular, the Jarzynski equality
(JE) [4,5], which relates the distribution of irreversible works
of a nonequilibrium process to the free-energy difference
between initial and final states. The JE can be written as

exp(−β�A) = 〈exp(−βW )〉, (1)

where β = 1
kBT

is the reciprocal of temperature multiplied by
the Boltzmann constant kB , �A is the free-energy difference
between the initial and final states, and 〈· · · 〉 denotes the
average over the ensemble of trajectories that starts from the
equilibrium distribution of the initial state and ends with the
final state. The work W is defined as

W [x(t)] =
∫ τ

0

∂H (x(t),�(t))
∂�

�̇ dt, (2)

where x(t) is a simple notation of a trajectory in the conforma-
tional space within the time interval [0,τ ]. The trajectory can
be generated by a deterministic or a stochastic dynamic under
the time-dependent Hamiltonian H (x,�(t)) with the protocol
�(t). Here �̇ denotes the time derivative of �(t). Thus the
work is a functional of the nonequilibrium trajectory x(t). In
this paper x(t) represents the whole trajectory and a particular
conformation of the trajectory at time t is denoted by xt .

The JE method provides a direct way to estimate the
free-energy difference in experiments, such as single-molecule
pulling [6–8], as well as to calculate the free energy by
nonequilibrium molecular dynamics (MD) simulations [9–12].
However, there is a major difficulty in applying the JE.
The right-hand side of Eq. (1), the ensemble average of an
exponential function of work, is dominated by rare trajectories
with small work values. Therefore, inadequate sampling of
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these rare events results in a biased estimation, as described by
the Jensen inequality [5]. One way to overcome this problem,
as done in single-molecule pulling experiments, is to apply
a very stiff spring potential to obtain a work distribution
with an approximate Gaussian shape [13], so the ensemble
average of the exponential function of work can be estimated
with satisfactory accuracy from a relatively small number of
trajectories [14–17]. In more general cases, however, the work
distribution may deviate far from Gaussian, so the Gaussian
approximation cannot estimate free energy very well. Another
way is to use enhanced sampling techniques to generate more
small-work trajectories [18–21], which enhances simulation
efficiency several times.

Another essential difficulty in applying the JE is to
achieve a well-equilibrated state as the starting point of
nonequilibrium trajectories, which may require a very (even
impractically) long simulation time for a complex system,
e.g., macroscopic biomolecules, to reach its equilibrium, since
the conformational space consists of multiple long-lifetime
metastable states separated by high free-energy barriers. Some
recent attempts tried to extend the applicability of the JE by
eliminating the requirement that the initial state must be well
equilibrated. For instance, Maragakis et al. [22] extended the
Crooks theorem [2] to calculate the free-energy difference
between two metastable conformational regions. Similarly,
Junier et al. [23] derived a fluctuation relation under partial-
equilibrium conditions to estimate the free-energy branches
of metastable states in single-molecule experiments. Very
recently, a theoretical extension of the JE with an arbitrary
initial distribution was also discussed by Gong and Quan [24].
However, these works have to apply the time-reverse process
of nonequilibrium trajectories to compensate for the deviation
of the initial distribution from the equilibrium one.

In this paper we extend the JE to be compatible with an
(almost) arbitrary initial distribution and any nonequilibrium
protocol without performing the time-reversal process by
presenting a transformation matrix form of the extended JE,
named the Jarzynski matrix equality (JME), which is built on
the free energies of the initial and final metastable substates of

2470-0045/2016/93(4)/043312(7) 043312-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.043312


BIAO WAN, CHENG YANG, YANTING WANG, AND XIN ZHOU PHYSICAL REVIEW E 93, 043312 (2016)

a nonequilibrium process. The initial distribution is in a local
equilibrium inside each metastable conformational region
(potential basin or superbasin) but is not equilibrated among
these regions, which is very easy to reach from any initial
distribution after a short-time local equilibrium relaxation. In
other words, the whole conformational space is composed of
some metastable regions (substates) and the local equilibrium
inside each region is quickly achieved. Since transitions from
one region to another have to overcome free-energy barriers,
reaching the equilibrium among those regions requires a great
deal of time. Therefore, in our method, an arbitrary initial
distribution can easily reach local equilibrium distributions
inside metastable substates after a short-time relaxation,
but the long-time relaxation towards the equilibrium among
metastable substates is avoided [25,26]. Consequently, the JE
connecting the free energy of well-equilibrated initial and final
states is now replaced by the JME connecting the free energies
of the metastable substates in the initial and final states.

The essential idea of the JME is formulated as follows.
We suppose that the whole conformational space is divided
into some nonoverlapping conformational regions (metastable
substates); then the total partition function of a system Z =∫

e−βH (x)dx is the summation of the local partition functions
of these substates Z = ∑

μ Zμ, where Zμ = ∫
�μ

e−βH (x)dx.
Here the integral is confined in the conformational region �μ

of the substate μ, which may be a potential energy basin
or many connected basins in the original conformational
space or a free-energy basin in a coarse-grained space. The
local equilibrium inside each of those metastable substates
can usually be quickly reached [27] and only transitions
between them require a very long time to happen. When
a nonequilibrium process is applied, we have Zμ(f ) =∑

ν πμν(f,i)Zν(i), where i and f denote the initial and
final states of the nonequilibrium process, respectively. The
transition matrix πμ,ν(f,i) = Tμν(f,i)〈exp(−βW )〉μν , where
Tμν(f,i) is the transition probability of trajectories starting
from substate ν of the initial state i to the substate μ of
the final state f and 〈·〉μν is the ensemble average over all
the transition trajectories from ν(i) to μ(f ). In particular, if the
final state is chosen to be identical to the initial one, the above
relation is reduced to the linear equation Zμ = ∑

ν πμνZν ,
which can be used to solve Zμ and thus the free energy of the
whole system.

II. THEORY AND METHODS

A. Basic theory

For an arbitrary initial distribution ρinit(x0), we can repro-
duce the equilibrium distribution of the initial Hamiltonian
H (x; λ0), ρeq,0(x0), by defining the weight function ω(x0) =
ρeq,0(x0)
ρinit(x0) ; then we have

〈ω(x0)δ(x − xτ ) exp{−βW [x(t)]}〉 = exp[−βH (x; f )]

Z(i)
,

(3)

where 〈· · · 〉 is the ensemble average over trajectories starting
from the initial distribution ρinit(x0) and H (x; f ) is the final
Hamiltonian. Equation (3) is a direct extension of the JE with
an arbitrary initial distribution. It is also an extension of the

formula given by Hummer and Szabo [6]. The original JE
can be obtained by integrating both sides of Eq. (3) with
respect to x after setting ω(x0) = 1. The reweighting itself
is not helpful, since ω(x0) is usually an exponential function
with a very wide range of values except in very low (one or
two) dimensions [26], but it facilitates our local equilibrium
approximations described below.

B. Local equilibrium approximation

As mentioned before, we can usually divide the confor-
mational space of a system into many regions and the local
equilibrium inside each of the regions can be achieved in a
short-time simulation, while the equilibration between regions
needs a much longer time. Therefore, after a short relaxation
simulation, an arbitrary initial distribution can relax to a locally
equilibrated distribution in proportion to the equilibrium dis-
tribution inside each of the conformational regions (metastable
substates) ρ(x; 0+) = ∑

μ cμρeq(x)μ(x). Here ρ(x; 0+) is
the short-time relaxed distribution and we can reset it as
Pinit(x) at t = 0. In addition, cμ is a constant depending on the
index of substate μ and μ(x) is the characteristic function
of substate μ, which is unity if the conformation x is inside
substate μ and otherwise zero. Note that the way to divide
the conformational space into metastable substates depends
on the relaxation time: If the relaxation time is very short,
we may have to divide the conformational space into many
small substates to guarantee that the local distribution inside
each of the substates is in equilibrium after the relaxation.
A simpler division with fewer and larger substates can be
achieved by a longer relaxation simulation, which allows
some adjacent small substates to merge together and form
more stable substates. Therefore, without losing generality,
we assume that the weighting function ω(x0) in Eq. (3) is
approximately a constant ων for all x0 inside the substate
ν, but the value of ων varies with respect to the index of
substate ν [26]. This approximation greatly simplifies Eq. (3)
in practice.

We now have∑
ν

〈
ων

i
ν(x0)δ(x − xτ ) exp{−βW [x(t)]}〉

= exp[−βH (x; f )]

Z(i)
, (4)

where the indices i and f represent the initial and final
Hamiltonians, respectively. By multiplying the characteristic
function of the final state 

f
μ(x) on both sides of Eq. (4) and

integrating both sides with respect to x, we have∫
dx

∑
ν

f
μ(x)ων

〈
i

α(x0)δ(x − xτ ) exp{−βW [x(t)]}〉

= Z(f )

Z(i)

∫
dx f

μ(x)ρeq,f (x). (5)

Here ρeq,f (x) is the equilibrium probability function of the
final state, which is equal to 1

Z(f ) exp[−βH (x; f )]. We rewrite
the local partition function of the metastable substate Zν =∫

ν(x)e−βH (x)dx and pν ∝ Zν , where pν is the equilibrium
probability of visiting substate ν. Eventually, we obtain the
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FIG. 1. Nonequilibrium simulation results of the one-dimensional symmetric multiple wells. (a) Simulation results for the double-well
potential. The X axis is the simulation duration of a single trajectory. The green symbols denote the eigenvalues of the transition matrix and
the red ones denote the partition function ratios of state 1 over state 2. The inset depicts the potential landscape. (b) Simulation results for the
triple-well potential. The green symbols denote the eigenvalues of the matrix, the red ones denote the partition function ratios of state 1 over
state 2, and the magenta ones denote the ratios of state 1 over state 3. The inset depicts the corresponding potential.

main expression of the JME
∑

ν

πμν(f,i)Zν(i) = Zμ(f ), (6)

where πμν(f,i) = nμν

nν (0)
1

nμν

∑
k exp(−βWk) = Tμν(f,i) 1

nμν∑
k exp(−βWk). Here nν(0) is the total number of trajectories

starting from substate ν in the initial state and nμν is the
number of trajectories starting from ν and ending in substate
μ in the final state. The summation of k is limited to the
transition trajectories from ν to μ and Wk is the work along
the transition trajectory k. In addition, Tμν(f,i) = nμν

nν (0) is the
transition probability of nonequilibrium trajectories starting
from state ν(i) and ending in state μ(f ). For equilibrium
processes Wk = 0, Eq. (6) becomes the normal detailed
balance condition.

C. Loop protocol and linear equation

If we choose a loop nonequilibrium protocol where the
initial Hamiltonian is identical to the final one, i.e., �(t0) =
�(τ ), Eq. (6) becomes a linear equation

∑
ν πμνZν = Zμ or

�Z = Z, (7)

which offers a practical way to estimate the local partition
functions {Zμ}. Here Z = (Z1, . . . ,Zμ, . . . ,Zn)T . Since the
matrix elements are non-negative, � is a positive and nonre-
ductive matrix. According to the Perron-Frobenius theorem,
a positive and nonreductive matrix has only one eigenvector
whose components all have the same sign, corresponding to the
eigenvalue with the largest modulus. Therefore, � has a unique
non-negative vector Z corresponding to the eigenvalue λ = 1
in Eq. (7). In principle, the corresponding eigenvalue should
be unity. In practice, however, due to numerical and statistical
errors, it might slightly differ from unity. The deviation of
the eigenvalue from unity is a good criterion for determining
whether the number of generated nonequilibrium trajectories
is sufficient.

III. RESULTS AND ANALYSIS

To check its validity, we applied the JME to three kinds of
systems: one-dimensional multiple-well potentials, Lennard-
Jones fluids around the liquid-solid coexistence region, and a
polymer chain with closing and opening end-end states. The
implementation of the JME contains four steps: (i) Randomly
choose many initial conformations (with a significant number
of conformations in each important metastable substate) and
then relax them shortly under the initial Hamiltonian to serve
as the initial conformations at t = 0 with the relaxation time
so chosen that each state can reach the local equilibrium; (ii)
start the nonequilibrium simulations with the loop protocol
�(0) = �(τ ) from the prepared initial conformations; and
(iii) calculate the matrix elements of � and its unique
same-sign eigenvector and the corresponding eigenvalue λ.
The eigenvector gives Z with an arbitrary constant coefficient
and whether λ approximately equals 1 provides a criterion for
evaluating the validity of the calculation.

A. One-dimensional toy models

We first consider a simple one-dimensional symmetric
double-well potential, shown in Fig. 1(a),

U = 1
2k(q2 − 9)2. (8)

A particle moving in this potential is simulated according to
the overdamped Langevin dynamics with β = 1. The mobility
of the particle is 0.2. A nonequilibrium loop protocol linearly
changes the parameter k as a function of time from k(0) = 0.2
to k(τ ) = 0.2, namely, k(t) = 0.2 − 0.36t/τ when 0 < t � τ

2
and k(t) = 0.02 + 0.36t/τ when τ

2 < t � τ .
We ran six sets of nonequilibrium simulations with different

simulation durations of τ = 100, 120, 140, 160, 180, and
200, respectively. For each set, we generated a total 2000
trajectories and the initial allocation of these trajectories in the
two states was that the left potential well had 1200 trajectories
and the right well had 800 trajectories. Each trajectory initially
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went through a short equilibration simulation to reach the local
equilibrium distribution inside its initial potential well. The
results are shown in Fig. 1(a). The green symbols denote the
eigenvalues of the transition matrix � and the red ones denote
the partition function ratios of state 1 over state 2, whose
theoretical values should both be 1. As expected, the values
of the two parameters calculated from different simulation
durations are all close to 1. The error bars in the figure are the
standard deviations obtained by repeating the simulations and
calculations 100 times.

We also applied the method to the overdamped motion of a
particle in a one-dimensional triple-well potential

U = 1
2k(q2 − 9)2(q2 + 0.3), (9)

where we set k = 0.1 and β = 1. The mobility of the particle
is 0.2. The three states are labeled 1, 2, and 3 from left to
right, as shown in Fig. 1(b). The exact partition function
values are Z1 = 1.58Z2 and Z1 = Z3. The nonequilibrium
protocol is similar to the previous example. We ran six sets
of nonequilibrium simulations with different durations of
τ = 100, 120, 140, 160, 180, and 200, respectively. For each
set, we generated 3000 trajectories evenly distributed in the
three states to estimate the matrix elements. The results are
shown in Fig. 1(b). The green symbols denote the eigenvalues
of the transition matrix, whose ideal value should be 1; the red
symbols denote the partition function ratios of state 1 over state
2, whose ideal value should be 1.58; and the magenta symbols
denote the ratios of state 1 over state 3, whose ideal value
should be unity. The values calculated from the trajectories
with different simulation lengths are all close to their ideal
values. The error bars in the figure are the standard deviations
obtained by repeating the simulations and calculation 100
times.

B. Lennard-Jones liquid-solid coexistence

Next we applied the JME to a 32-particle Lennard-Jones
(LJ) system inside a cubic box with a side length of 11.8 Å
and the periodic boundary condition applied. The system was
coupled to a Nóse-Hoover thermostat with temperature T =
55 K, at which the liquid and solid states have similar free
energies. The pairwise LJ interaction

u(r) = 4ε

(
σ 12

r12
− σ 6

r6

)
, (10)

where the cutoff radius was 5.8 Å smaller than half of
the simulation box length. At evenly distributed 40 time
points during the whole nonequilibrium simulation period, we
uniformly changed the parameter ε from 0.34 to 0.35, then
from 0.35 to 0.33, and finally from 0.33 to 0.34. The unit of ε

was kcal/mol. The nonequilibrium work was calculated based
on Eq. (2). The fractions of the liquid and solid states can
be calculated from the nonequilibrium simulations based on
Eq. (6). To distinguish the liquid and solid states, we employed
the local bond order parameters measuring the local structure
around a particle [28], defined as

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(r̃ij ), (11)
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FIG. 2. Nonequilibrium simulation results of the LJ system. The
X axis is the simulation duration of a single trajectory. The black
symbols denote the eigenvalues of the matrix and the red ones denote
the partition function ratios of the solid state over the liquid state.
As a reference, the mean value from 20 sets of 400 1-ns equilibrium
simulations (green shadow) is 0.37.

where r̃ij is the unit vector from particle i to particle j , the
summation goes over all neighboring particles Nb(i) of particle
i, and Ylm(r̃ij ) is the spherical harmonic function, with l and
m taking integer values of l = 0,1, . . . , and m = −l, . . . ,l.
Specifically, q6 is known as a good order parameter for
distinguishing the liquid and solid phases [28]. In simple
liquids, there are no preferred orientations around a particle and
thus the structural correlation decays rapidly. In contrast, for
particles in a solidlike environment the vectors are correlated:

q6(i) · q6(j ) =
6∑

m=−6

q6m(i) · q∗
6m(j ), (12)

where the asterisk indicates the complex conjugate. The
average of the correlation functions provides a rough criterion
for distinguishing the liquid phase and the solid phase as [29]

s = 1

32

∑
i

Nb(i)∑
j=1

q6(i) · q6(j )

|q6(i)||q6(j )| . (13)

In our MD simulations of this system, the value of the
parameter changes continuously from 0 to 12 when it evolves
from the liquid phase to the solid phase. We consider the system
to be in the liquid phase when s < 7 and solid otherwise.

Figure 2 shows six sets of nonequilibrium simulations with
the simulation length of the individual trajectory τ ranging
from 4.8 to 42 ps. For each set of simulations, we generated 200
trajectories starting from liquid and the other 200 from solid.
The bootstrap method [30] was used to estimate errors. Each
trajectory first went through a 0.2-ps equilibration simulation
for initial local relaxation. The positive eigenvalues of the
transition matrices approximately equal 1 due to the small
work fluctuations in our simulations. For comparison, we
also simulated 20 × 400 equilibrium simulation trajectories
with τ = 1 ns for each and then counted the numbers of
trajectories in the liquid and solid states as a function of time
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FIG. 3. (a) End-end closing configuration and (b) end-end open-
ing configuration of the polymer chain system. (c) Coulomb energy
distribution from 5000 samples showing two well-separated peaks:
the energy greater than −1.2 belongs to the end-end opening state
and the energy less than −1.2 belongs to the end-end closing
configuration.

t ∈ [0,τ ], N1(t) and N2(t). We have found that the ratio of
the probabilities visiting the two states C(t) = N1(t)/N2(t)
vibrationally approaches a constant value when t > 0.5 ns.
The constant value is regarded as a reference for the ratio
of equilibrium visiting probabilities in the two states and its
error bar is the standard deviation calculated by dividing these
trajectories into 20 different groups. The ratio of the solid-state
partition function to the liquid-state one obtained from 15-ps
trajectories is already in good agreement with the reference
value.

C. Opening and closing polymer chain

Finally we studied a model polymer chain consisting of
70 atoms. The atoms interact with each other by the pairwise
LJ potential and the neighboring atoms along the chain are
connected by a harmonic spring potential. In addition, we
applied the Coulomb interaction to the two ending atoms of
the chain to adjust the ratio of two metastable states, namely,
the end-end closing and opening states, shown in Figs. 3(a)
and 3(b), respectively. The distribution of the Coulomb energy
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FIG. 4. Nonequilibrium simulation results for the polymer chain
model. The black symbols denote the eigenvalues of the matrix and
the red ones denote the partition function ratios of the open state over
the loop state. As a reference, the mean value of 20 sets of 500 2.5-ns
equilibrium simulations (green shadow) is 0.45.

shown in Fig. 3(c) has two well-separated peaks, which allows
it to serve as an order parameter to distinguish the open and
close states. The Coulomb potential is

Ue(r) = −α

r
, (14)

where α = Q1Q2
4πε

, with Q1 and Q2 being the charges of the two
ending atoms and ε the dielectric constant. Here an isolated
system without any periodic images is considered and the
cutoff radius of the Coulomb interaction is 50 Å. Since the
Coulomb interaction controls the opening-closing transition,
the simplest way of enhancing the transition is to manipulate
the coefficient α.

The nonequilibrium simulation was evenly divided into 20
time segments and the parameter α was uniformly changed
stepwise from 1/34 to 1/40 at the starting time point of
the first 10 segments and then uniformly increases stepwise
back to 1/34 at the starting time point of the second 10
simulation segments. The nonequilibrium work is then W =∑

i δU
i
e , where δUi

e = − δαi

ri
is the Coulomb energy change

at the ith α variation, with ri the end-end distance. Figure 4
shows six sets of nonequilibrium simulations with the length
of each trajectory ranging from τ = 0.2 to 0.48 ns. The
system temperature was fixed at T = 300 K by coupling
to a Langevin thermostat. For each set of simulations, 500
trajectories were generated and each state initially had 250
trajectories, thus the total simulation time in each protocol is
ttotal = 500τ . At the beginning, each trajectory went through
a 2-ps simulation to reach the local equilibrium inside each
state. For comparison, we also simulated 20 × 500 equilibrium
simulation trajectories with τ = 2.5 ns for each and then
counted the numbers of trajectories in the two states as a
function of time t ∈ [0,τ ], N1(t) and N2(t). The ratio of the
visiting probabilities in the two states C(t) = N1(t)/N2(t)
was found to vibrationally approach a constant value when
t > 1 ns. The constant value is regarded as a reference for the
ratio of equilibrium visiting probabilities in the two states

043312-5



BIAO WAN, CHENG YANG, YANTING WANG, AND XIN ZHOU PHYSICAL REVIEW E 93, 043312 (2016)

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

 0

 0.03  0.035  0.04  0.045  0.05

fr
ee

 e
ne

rg
y 

(k
ca

l/m
ol

)

α

Noneq
TI

FIG. 5. Free-energy difference as a function of the Coulomb
interaction strength α changing from 1/34 to 1/20. The green line is
the free energy as a function of α from the nonequilibrium simulation
using Eq. (6) with an initial ratio of 0.43. As a reference, the red one
is the free energy as a function of α in [1/34,1/25] calculated by the
thermodynamic integration method.

and its error bar is the standard deviation calculated by
dividing these trajectories into 20 different groups. As shown
in Fig. 4, the nonequilibrium simulations with τ > 0.28 ns are
in agreement with the equilibrium simulation result.

After obtaining the initial Zν(i), it is straightforward to
estimate the free energy of any final state based on Eq. (6).
In the polymer chain system, 250 170-ps nonequilibrium
trajectories with the protocol evenly and stepwise change α

from 1/34 to 1/20 at 17 time points, so the total simulation
time of all trajectories is 42.5 ns. In Fig. 5 the green line
denotes the calculated free energy as a function of α. For
comparison, we also calculated the free energy with α in
[1/34,1/25] by the thermodynamic integration (TI) method
based on equilibrium simulations [31]. We can see that the free-
energy profile obtained from the nonequilibrium simulation
is in good agreement with the value obtained by the TI
method.

IV. CONCLUSION AND DISCUSSION

The major advantage of the JME over the JE is not to
require the global equilibrium initial distribution, so the JME
can be applied to complex systems whose initial equilibrium
distribution is usually hard to obtain. In addition, in the
JME, trajectories are clustered into different groups according
to their beginning and ending metastable substates and the
exponential average of work is estimated separately in each
group. Since the work fluctuation inside each group should
not be larger than that of all trajectories, the grouping average
may be advantageous in estimating the exponential average of
work.

The key of the JME method is to choose a nonequilibrium
process that can enhance the transition efficiency among
metastable substates and at the same time limit the work
fluctuation in each group of the nonequilibrium trajectories
within the order of kBT . For these two purposes, the applied
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FIG. 6. Work distribution of the fastest nonequilibrium simula-
tion for the polymer chain model.

time-dependent biased potential in the JME should be so
designed that it can lower the free-energy barriers separating
important metastable substates to be on the order of a few
kBT . Although this kind of biased potential was previously
implemented in equilibrium simulations [31–33], we managed
to adopt it in nonequilibrium simulations of the JME by
applying the bias potential slowly to remove the associated
nonequilibrium effects. It is essential to design the range-
limited biased potential in such a way that it is mainly allocated
in the transition regions between metastable substates, which
usually requires some a priori understanding of the metastable
substates, order parameters, or reaction coordinates. For
example, in the polymer chain model we have studied, all
the chosen nonequilibrium protocols produce small work
fluctuations and enhance transitions. The work fluctuation even
in the fastest nonequilibrium simulation (τ = 0.2 ns), as shown
in Fig. 6, is still on the order of 1kBT , which guarantees the
accuracy of free-energy calculations.

The systems studied in this paper all have metastable
substates that are known and easy to distinguish, so we can
focus on the transition-related regions and design a suitable
biased potential to adjust the potential energy surface in
those regions. In more general cases, when the metastable
substates of the system are unknown, we may have to combine
the JME with one of our previously developed techniques,
the reweighting ensemble dynamics method [26], to obtain
a more general formula for the JME without explicitly
identifying metastable substates and the transitions among
them [34].

ACKNOWLEDGMENTS

Funding by the NSFC under Grants No. 11347614 and No.
11121403 and the Open Project from State Key Laboratory of
Theoretical Physics is gratefully acknowledged. X.Z. thanks
the Hundred Talent Program of the Chinese Academy of
Sciences for financial support and D. P. Landau for discussion.

043312-6



JARZYNSKI MATRIX EQUALITY: CALCULATING THE . . . PHYSICAL REVIEW E 93, 043312 (2016)

[1] G. E. Crooks, J. Stat. Phys 90, 1481 (1998).
[2] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).
[3] R. Klages, W. Just, and C. Jarzynski, Nonequilibrium Statistical

Physics of Small Systems (Wiley-VCH, Weinheim, 2013).
[4] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[5] C. Jarzynski, Phys. Rev. E 56, 5018 (1997).
[6] G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658

(2001).
[7] J. Liphardt, S. Dumont, S. B. Simth, T. Tinoco, and C.

Bustamante, Science 296, 1832 (2002).
[8] N. C. Harris, Y. Song, and C.-H Kiang, Phys. Rev. Lett. 99,

068101 (2007).
[9] C. Jarzynski, Eur. Phys. J. B 64, 331 (2008).

[10] G. Hummer and A. Szabo, Acc. Chem. Res. 38, 504 (2005).
[11] S. Park, F. Ritort, E. Tajkhorshid, and K. Schutlen, J. Chem.

Phys. 119, 3559 (2003).
[12] M. O. Jensen, S. Park, E. Tajkhorshid, and K. Schutlen, Proc.

Natl. Acad. Sci. USA 99, 6731 (2002).
[13] S. Park and K. Schutlen, J. Chem. Phys. 120, 5946 (2004).
[14] G. Hummer, J. Chem. Phys. 114, 7330 (2001).
[15] D. M. Zuckerman and T. B. Woolf, Phys. Rev. Lett. 89, 180602

(2002).
[16] D. M. Zuckerman and T. B. Woolf, Chem. Phys. Lett. 351, 445

(2002).
[17] J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci.

USA 100, 12564 (2003).

[18] C. Jarzynski, Proc. Natl. Acad. Sci. USA 98, 3636 (2001).
[19] S. X. Sun, J. Chem. Phys. 118, 5769 (2003).
[20] F. M. Ytreberg and D. M. Zuckerman, J. Chem. Phys. 120, 10876

(2004).
[21] R. Chelli, C. Gellini, G. Pietraperzia, E. Giovannelli, and C.

Cardini, J. Chem. Phys. 138, 214109 (2013).
[22] P. Maragakis, M. Spichty, and M. Karplus, Phys. Chem. B 112,

6168 (2008).
[23] I. Junier, A. Mossa, M. Manosas, and F. Ritort, Phys. Rev. Lett.

102, 070602 (2009).
[24] Z. Gong and H. T. Quan, Phys. Rev. E 92, 012131 (2015).
[25] X. Huang, G. R. Bowman, S. Bacallado, and V. S. Pande, Proc.

Natl. Acad. Sci. USA 106, 19765 (2009).
[26] L. C. Gong and X. Zhou, Phys. Rev. E 80, 026707 (2009).
[27] M. A. Miller and D. J. Wales, J. Chem. Phys. 111, 6610 (1999).
[28] S. Auer and D. Frenkel, J. Chem. Phys. 120, 3015 (2004).
[29] J. Russo and H. Tanaka, Sci. Rep. 2, 505 (2012).
[30] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap

(Chapman & Hall, New York, 1993).
[31] D. Frenkel and B. Smit, Understanding Molecular Simulation:

From Algorithms to Applications (Academic, New York, 2001).
[32] D Chandler, J. Chem. Phys. 68, 2959 (1978).
[33] M. J. Ruiz-Montero, D. Frenkel, and J. J. Brey, Mol. Phys. 90,

925 (1997).
[34] C. Yang, B. Wan, S. Xu, Y. T. Wang, and X. Zhou, Phys. Rev. E

93, 033309 (2016).

043312-7

http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1103/PhysRevLett.99.068101
http://dx.doi.org/10.1103/PhysRevLett.99.068101
http://dx.doi.org/10.1103/PhysRevLett.99.068101
http://dx.doi.org/10.1103/PhysRevLett.99.068101
http://dx.doi.org/10.1140/epjb/e2008-00254-2
http://dx.doi.org/10.1140/epjb/e2008-00254-2
http://dx.doi.org/10.1140/epjb/e2008-00254-2
http://dx.doi.org/10.1140/epjb/e2008-00254-2
http://dx.doi.org/10.1021/ar040148d
http://dx.doi.org/10.1021/ar040148d
http://dx.doi.org/10.1021/ar040148d
http://dx.doi.org/10.1021/ar040148d
http://dx.doi.org/10.1063/1.1590311
http://dx.doi.org/10.1063/1.1590311
http://dx.doi.org/10.1063/1.1590311
http://dx.doi.org/10.1063/1.1590311
http://dx.doi.org/10.1073/pnas.102649299
http://dx.doi.org/10.1073/pnas.102649299
http://dx.doi.org/10.1073/pnas.102649299
http://dx.doi.org/10.1073/pnas.102649299
http://dx.doi.org/10.1063/1.1651473
http://dx.doi.org/10.1063/1.1651473
http://dx.doi.org/10.1063/1.1651473
http://dx.doi.org/10.1063/1.1651473
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1103/PhysRevLett.89.180602
http://dx.doi.org/10.1103/PhysRevLett.89.180602
http://dx.doi.org/10.1103/PhysRevLett.89.180602
http://dx.doi.org/10.1103/PhysRevLett.89.180602
http://dx.doi.org/10.1016/S0009-2614(01)01397-5
http://dx.doi.org/10.1016/S0009-2614(01)01397-5
http://dx.doi.org/10.1016/S0009-2614(01)01397-5
http://dx.doi.org/10.1016/S0009-2614(01)01397-5
http://dx.doi.org/10.1073/pnas.1635159100
http://dx.doi.org/10.1073/pnas.1635159100
http://dx.doi.org/10.1073/pnas.1635159100
http://dx.doi.org/10.1073/pnas.1635159100
http://dx.doi.org/10.1073/pnas.081074598
http://dx.doi.org/10.1073/pnas.081074598
http://dx.doi.org/10.1073/pnas.081074598
http://dx.doi.org/10.1073/pnas.081074598
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1760511
http://dx.doi.org/10.1063/1.1760511
http://dx.doi.org/10.1063/1.1760511
http://dx.doi.org/10.1063/1.1760511
http://dx.doi.org/10.1063/1.4808037
http://dx.doi.org/10.1063/1.4808037
http://dx.doi.org/10.1063/1.4808037
http://dx.doi.org/10.1063/1.4808037
http://dx.doi.org/10.1021/jp077037r
http://dx.doi.org/10.1021/jp077037r
http://dx.doi.org/10.1021/jp077037r
http://dx.doi.org/10.1021/jp077037r
http://dx.doi.org/10.1103/PhysRevLett.102.070602
http://dx.doi.org/10.1103/PhysRevLett.102.070602
http://dx.doi.org/10.1103/PhysRevLett.102.070602
http://dx.doi.org/10.1103/PhysRevLett.102.070602
http://dx.doi.org/10.1103/PhysRevE.92.012131
http://dx.doi.org/10.1103/PhysRevE.92.012131
http://dx.doi.org/10.1103/PhysRevE.92.012131
http://dx.doi.org/10.1103/PhysRevE.92.012131
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1103/PhysRevE.80.026707
http://dx.doi.org/10.1103/PhysRevE.80.026707
http://dx.doi.org/10.1103/PhysRevE.80.026707
http://dx.doi.org/10.1103/PhysRevE.80.026707
http://dx.doi.org/10.1063/1.480011
http://dx.doi.org/10.1063/1.480011
http://dx.doi.org/10.1063/1.480011
http://dx.doi.org/10.1063/1.480011
http://dx.doi.org/10.1063/1.1638740
http://dx.doi.org/10.1063/1.1638740
http://dx.doi.org/10.1063/1.1638740
http://dx.doi.org/10.1063/1.1638740
http://dx.doi.org/10.1038/srep00505
http://dx.doi.org/10.1038/srep00505
http://dx.doi.org/10.1038/srep00505
http://dx.doi.org/10.1038/srep00505
http://dx.doi.org/10.1063/1.436049
http://dx.doi.org/10.1063/1.436049
http://dx.doi.org/10.1063/1.436049
http://dx.doi.org/10.1063/1.436049
http://dx.doi.org/10.1080/002689797171922
http://dx.doi.org/10.1080/002689797171922
http://dx.doi.org/10.1080/002689797171922
http://dx.doi.org/10.1080/002689797171922
http://dx.doi.org/10.1103/PhysRevE.93.033309
http://dx.doi.org/10.1103/PhysRevE.93.033309
http://dx.doi.org/10.1103/PhysRevE.93.033309
http://dx.doi.org/10.1103/PhysRevE.93.033309



