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SPECIAL TOPIC — Water at molecular level
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It is very important to determine the phase transition temperature, such as the water/ice coexistence temperature in
various water models, via molecular simulations. We show that a single individual direct simulation is sufficient to get
the temperature with high accuracy and small computational cost based on the generalized canonical ensemble (GCE).
Lennard–Jones fluids, the atomic water models, such as TIP4P/2005, TIP4P/ICE, and the mW water models are applied
to illustrate the method. We start from the coexistent system of the two phases with a plane interface, then equilibrate the
system under the GCE, which can stabilize the coexistence of the phases, to directly derive the phase transition temperature
without sensitive dependence on the applied parameters of the GCE and the size of the simulation systems. The obtained
result is in excellent agreement with that in literatures. These features make the GCE approach in determining the phase
transition temperature of systems be robust, easy to use, and particularly good at working on computationally expensive
systems.
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1. Introduction
The first-order phase transitions, such as the water/ice

transition, are very popular phenomena in nature. Molecular
modeling and simulations offer microscopic insights to both
the thermodynamics and kinetics of phase transitions.[1–11]

The phase coexistence temperature is one of the center val-
ues to verify models, and efficiently calculating the tempera-
ture via simulations to compare with experiments is key in the
molecular modeling and simulations of phase transitions.

Estimating the phase transition temperature via simula-
tions has been a long term issue. Take the TIP4P water model
for example, it was proposed by Jorgensen in 1983[12] and well
performs in revealing the density of liquid water, the density
near the critical point, and the enthalpy of vaporization.[13] A
rough estimate of the melting point of ice Ih was first given by
Kroes[14] as 230 K < Tc < 250 K for the water model by mon-
itoring the translational mobility of atoms on the ice/water in-
terfaces. Later in 2000, with free energy (FE) calculation, Gao
indicated Tc = 238± 7 K.[6] While another study proposed
by Vega in 2005 implied a similar result, Tc = 232± 5 K.[15]

Although the FE approach determined phase transition tem-
perature is theoretically flawless, refers to the state at which
two phases have Gibbs free energy identical, tiny uncertainty
in free energy estimation can lead to a totally different result.

Gao described this as “1 percent in relative error leads to a shift
of melting point more than 10 K”, the FE approach seems to
reach its limit.

Direct coexistence (DC) simulation of phase transi-
tion is also a generally accepted method to determine the
phase transition temperature. This method is particularly
popular in extracting the gas–liquid coexisting line on the
phase diagram,[16–19] and also can be applied in liquid/solid
systems.[5,20,21] Those works of determining the phase tran-
sition temperature with DC approach show great agreement
with the FE approach, and sometimes better precision if the
data sample is sufficient. For example, with the water model
TIP4P-2005 (by reparameterising from the TIP4P),[22] Conde
calculated the melting point of the ice Ih by both FE and DC
approaches, that is, 252±5 K and 249±3 K, respectively.[21]

In 2017, by performing simulations covering a range of tem-
perature space, repeating the simulation with different seeds
for 5 times, using the potential energy evolution in tens of
nanoseconds as the phase transition indicating order parame-
ter, Conde developed the DC approach with exhaustive study,
obtaining Tc = 249.5± 0.1 with the best precision to date.[5]

However, the plenty of simulations and expensive CPU cost
have limited the application of this approach.

The Hamiltonian Gibbs–Duhem integration offers an-
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other option. A number of studies have demonstrated that
once the melting point of a model is known, the melting point
of a different model can be easily estimated with the Gibbs–
Duhem integration.[10,15] However, this reference model de-
pendent estimate is not universally applicable, one can neither
extract the melting point of ice Ic from an ice Ih reference, nor
a silicon phase transition reference.

In this work, we aim to provide a simple and univer-
sal method with high precision and efficiency for determin-
ing the phase transition temperature. To achieve this, the
generalized canonical ensemble (GCE)[23–28] has been im-
plemented successfully in Lennard–Jones (LJ) particles and
ice/water systems with the mW, TIP4P-2005, TIP4P-ICE wa-
ter models. Unlike in the normal canonical ensemble simu-
lations where phase-coexistence states are unstable thus can
not be focused on, the GCE allows sufficiently sampling in the
phase-coexistence regions, making a single simulation of DC
approach be enough to calculate the phase transition tempera-
ture with considerable precision.

This work is organized as follows. Section 2 presents the
theory for determining the phase transition temperature. Sec-
tion 3 describes the models and method used in this work. Sec-
tion 4 presents the results in various systems. The papers ends
with a discussion and conclusions.

2. Theory
2.1. Generalized canonical ensemble

The GCE method has been explicitly demonstrated in pre-
vious studies,[23–25] here we present a brief overview of this
method. In GCE, the energy-dependent thermostat tempera-
ture is applied to couple with the system, in physics, it is equiv-
alent to apply a finite-size thermostat so that the temperature
of the thermostat varies as the energy of the system (and the
energy of the thermostat, since the total energy of the system
and thermostat is constant). In GCE, we choose the simplest
form of the energy-dependent (reverse) temperature

β (E) = β0 +α(E−E0). (1)

Here β0 =
1

kBT0
with the Boltzmann constant kB (setting as unit

in this work) and a constant temperature parameter T0. The
other two constant parameters in the GCE are α and E0, and
we set α ≥ 0. The corresponding conformation distribution in
the GCE is

Pg(r) ∝ e−β0Ueff(r), (2)

equivalent to the normal canonical ensemble under an effec-
tive potential energy surface

Ueff(r) =U(r)+
α

2
T0(U(r)−E0)

2. (3)

Here U(r) is the potential energy of the original system, r is a
simple denotation of the high-dimensional conformation, such

as all atomic position vectors, and the integral about r is over
the whole conformational space. Obviously, the GCE is an ex-
tension of the normal canonical ensemble where α = 0. Simi-
lar to the GCE with constant volume, we have the correspond-
ing GCE with constant pressure, denoted as gNPT, where the
inverse temperature is written as

β (H) = β0 +α(H−H0), (4)

with H = E +PV being the enthalpy of the system.
The GCE (or gNPT) is equivalent to applying an effective

potential energy, thus its implementation is simple and direct
by rescaling the physical force on each atom. It is also possible
to reset the temperature of the thermostat at each MD simula-
tion step under the original potential energy surface, from the
viewpoint of applying a finite-size thermostat. The two im-
plementations are thought to be equivalent to each other for
achieving the equilibrium properties.[25,26]

The GCE aims to use a large positive α to visit suffi-
ciently the phase-coexistent conformational regions, while the
canonical ensemble (α = 0) can not focus in the regions due
to the thermodynamical instability of the coexistent states. We
define the microcanonical entropy S(E) = ln

∫
drδ (E−U(r)),

and will show that S′′(E) = ∂ 2S/∂E2 > 0 is the condition of
the thermodynamical instability. The probability distribution
of GCE in the energy space is

P(E) ∝ exp
[
S(E)−β0E− α

2
(E−E0)

2
]

(5)

∝ exp
[
−1

2
(α−S′′(Em))(E−Em)

2 + · · ·
]
.

Here Em is the maximal point of the probability distribution,
thus the simulation focuses on visiting the neighboring energy
region of Em when and only when α > S′′(Em). The Em satis-
fies the equation

S′(Em) = β (Em) = β0 +α(Em−E0), (6)

i.e., the cross point of the curve S′(E) = ∂S/∂E which is
the inverse interior (system) temperature and the curve β (E)
which is the inverse exterior (thermostat) temperature. Obvi-
ously, if α < S′′(Em), Em is the minimal point of the proba-
bility distribution, thus the neighbor of Em is unstable in the
GCE, which can not be sufficiently visited. In the phase-
coexistent regions, S′′(E) > 0, thus they can not be visited
sufficiently in the canonical ensembles (α = 0) but can be sta-
bilized in the GCE by using larger α > S′′(E).

If neglecting the possible small asymmetry of the GCE
probability distribution around Em, we approximately have
Em ≈ Ē, the average energy in the GCE. Thus we can inter-
polate the whole curve S′(E) via the obtained points S′(Ē) =
β0 +α(Ē−E0) in a series of GCE simulations with different
E0 (or β0). The S′(E) curve is sufficient to get thermodynam-
ical properties of the original system in the canonical ensem-
ble with any temperature. Actually, in the pure phases, the
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average energy in a GCE, Ē, is approximately equal to that
in the canonical ensemble with the corresponding temperature
T = (β0 +α(Ē−E0))

−1.

2.2. Phase transition temperature

At the phase transition temperature (or named as the
phase coexistence temperature) Tc, the two pure phases
have the same Helmholtz (or Gibbs) free energy as a func-
tion of temperature, As(Tc) = Al(Tc). Here we use the
Landau free energy F(E;T ) = E − T S(E), and A(T ) =

−T ln
∫

exp[−F(E;T )/T ]dE ≈F(ĒT ;T ). Here we neglect the
varying of distribution width of energy on temperature, and ĒT

is the mean energy in the canonical ensemble with the tem-
perature T . Thus, we can determine Tc from the equation
El− TcS(El) = Es− TcS(Es). It is nothing else but the well-
known Maxwell equal area rule∫ El

Es
(S′(E)−βc)dE = 0. (7)

Here Es and El are the cross points of the curve S′(E) with
βc = 1/Tc, i.e., the mean energies of the l and s phases at Tc. It
means that

S(El)−S(Es) =
El−Es

Tc
. (8)

Therefore, when T = T−c , the system is in the s phase with the
mean energy Es, but when T = T+

c , it is in the l phase with
the mean energy El. When T = Tc, the two phases have the
same free energy, and the states with the energy in [Es,El] are
metastable (superheating and supercooling) or unstable (phase
coexistence) in the canonical ensembles. It is worth to men-
tion here that E should be replaced by the enthalpy H if using
the ensemble with the constant pressure instead of the constant
volume.

Usually, ones can run simulations in canonical ensembles
to estimate the temperature Tm at which the system often melts
from solid to liquid phase, and the temperature Tf at which the
system easily freezes from liquid to solid. The coexistence
temperature Tc is between the two temperatures, and is pos-
sibly estimated as Tc ≈ 1

2 (Tm + Tf). Due to the superheating
and supercooling phenomena (it will be more obvious with
increasing surface tension), the melting and freezing tempera-
tures may be not just at very small neighbors of Tc, and might
be not symmetric about Tc , thus an uncertainty occurs if sim-
ply using these direct simulations in canonical ensembles to
determine the coexistence temperature.

In GCE, the whole S′(E) curve can be constructed, thus
we can integrate to get S(E) and to estimate Tc from Eq. (7)
in our previous works.[23–27] In this work, a much simpler ap-
proach can be applied to determine the coexistence tempera-
ture without requiring to construct the whole S′(E) curve, but
a single individual simulation. In the middle of the two-phase

coexistence energy region, we have

S(E) = xS(Es)+(1− x)S(El)+∆Si,

E = xEs +(1− x)El +∆Ei. (9)

Here x is the fraction of the s phase in the coexistence state.
∆Si and ∆Ei are the additional contributions of entropy and
energy due to the interface between the two phases. The area
of interface, A = κ(y)L2, is dependent on the fraction x and
the shape of the interface. Here κ is the shape factor, y is the
smaller one of x and 1−x, and L is the length of the simulation
box. For a flat plane interface, κ = 1 and independent of x, is
the minimal one in all shapes of interfaces, when two phases
have comparable fractions, i.e., x ∼ 0.5, then y∼ 0.5. For ex-
ample, for a spherical interface, κ(y) = (36π)1/3y2/3 ∼ 3, and
for a cylinderical interface, κ(y) = (4πy)1/2 ∼ 2.5. Therefore,
we know that the interface is almost a flat plane in the mid-
dle of the phase-coexistence region. Thus we have that S′(E)
is approximately a constant from Eq. (9), equals to 1/Tc, see
Fig. 1. Therefore, we can directly get the S′(E) then the Tc via
a single individual GCE simulation in the phase-coexistence
states with the comparable fractions thus a flat-plane interface.
This is the main idea of the presented method in this work.
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Fig. 1. The gNPT simulation gives the almost constant value of the
temperature in the middle of the phase-coexistence energy region as
the phase transition temperature Tc = 0.619±0.003ε/kB for LJ model.
Here the temperature as y axis is the calculated interior temperature of
the system in the simulations, 1/S′(E), rather than an input parameter.

3. Models and methods
3.1. Models

We assess the method in determining the coexistence tem-
perature of the Lennard–Jones fcc crystal, and that of ice Ih

in the all-atom TIP4P-2005 and TIP4P-ICE water models, as
well as the coarse-grained mW water.[7]
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3.2. Simulation details

The simulation system is built with 32480 or 4584 water
molecules for mW (approximately 400 Å×56 Å×43 Å) and
all-atom water models (approximately 200 Å×26 Å×29 Å),
respectively. The ice phase is generated from 20 ns equili-
brated bulk ice Ih at 260 K, with x–y plane set as ice Ih basal
plane, leaving the secondary prismatic plane (1210) in contact
with a bulk liquid water phase. The two-phase systems are
then equilibrated for another 100 ps. The size in the x direc-
tion is about 7 times of that in the y and z directions to ensure
stable interfaces and study the finite-size effect. For the LJ sys-
tem, a typical coexisting system composed of 8200 fcc solid
and 8000 liquid particles is built in a similar way with the 001
surface of solid as the contact plane.

All MD simulations are carried out in the GCE embed-
ded isothermal-isobaric (NPT) ensembles (gNPT), employ-
ing LAMMPS molecular dynamics code with our added GCE
module.[23] A Nose–Hoover barostat[29] with 1 ps relaxation
time is used to keep the pressure at 1 atm. For all-atom water
models, a time step of 2 fs is used in all simulations. The pair
interaction between the oxygen atoms is truncated smoothly
at 13.0 Å. Nontruncated electrostatic interactions are treated
by the particle–particle particle mesh solver (pppm) with a
real space cutoff of 13.0 Å and precision tolerance of 10−5.
The simulation parameters in the mW water model are set nor-
mally, similar to that in reference.[7] In the LJ systems, a cutoff
of 2.5σ is used to truncate the interaction.

4. Results and discussion
We first illustrate the gNPT simulations of the coexistent

solid/liquid LJ system to determine the phase transition tem-
perature and its dependence on the parameters of gNPT.

The study starts with a set of gNPT simulations of LJ par-
ticles with varied parameter H0/N to visit the states with dif-
ferent regions of enthalpy, corresponding to the different tem-
peratures in pure phases and the coexistent phases with dif-
ferent fraction of two phases. The obtained mean enthalpy of
each particle in every gNPT simulation, H/N, is from −7 to
−5 (unit is the ε of the LJ potential). Here N is the number of
particles. The result can be easily identified as a pure phase or
a phase-coexistent state, as shown in Fig. 1. This result out-
lines the key idea we proposed to extract the phase coexistent
temperature in an easy, fast, and accurate manner.

The coexistent temperature Tc is approximately extracted
as the temperature in the middle of the coexistent region, or as
the statistical average of the corresponding temperature from
the platform region (−6.4 6 H/N 6−5.8).

We also carry out the gNPT simulations with water mod-
els. Water/ice coexisting systems are first simulated at 250 K
for 100 ps to relax the interfaces and to estimate the param-
eter of gNPT, H0/N. For the mW model, the mean enthalpy

in the coexistent region is around −10.7 (the unit is always
kcal/mol in this work for water). Then we run gNPT sim-
ulations each for 20 ns with the mean enthalpy ranged from
−9.9 to −11.5 are shown in Fig. 2. The result shows that the
gNPT simulations locate in the phase coexistence region cor-
responding the enthalpy −11.3 6 H/N 6−10.3. Meanwhile,
when H/N =−9.9,−10.1,−11.5, the gNPT simulations cor-
respond to the NPT simulations of the bulk liquid water at
312 K, 286 K and the bulk ice at 268 K, respectively.

Fig. 2. The stable conformations in the gNPT simulations with distinct en-
thalpies, from all liquid water, the ice/water coexistence with different frac-
tions of ice and water, to the complete frozen ice Ih.

It is interesting to see the temperature evolution in the
gNPT simulations, as shown in Fig. 3. It takes a comparably
short time (less than 2 ns) for mW water to attain equilibrium.
Data between 5 ns and 60 ns is sampled for statistical average,
and here we only present the former 5 ns data to show that
the temperature in the 6 distinct phase coexistence systems (H
ranges form −11.3 to −10.3) spontaneously evolves into the
same value ( 275.1 K), i.e., the coexistence temperature. In
Fig. 4, we compare the obtained temperature in the gNPTs
with the melting point of the model 274.6±1 K in literature[7]

(color in cyan), the result shows good agreement. We can get
the coexistence temperature by using any one of the gNPT in
the middle region of coexistence with deviation in order of
1 K. By averaging the results in the six samples covering the
water/ice coexistent system, we have Tc = 275.1±0.3 K.
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Fig. 3. The evolution of obtained temperature in gNPTs with distinct
parameter. The initial conformation is a coexistent state of ice Ih/water.
Only the first 5 ns simulation trajectories are plotted.
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Fig. 4. The temperatures obtained in the gNPT simulations. Cyan re-
gion refers to 274.6± 1 K, the melting point of the mW water model
proposed in previous study.[7] Tc = 275.1±0.3 K is the average of six
simulations located in the phase-coexistence region.

It has to be point out that the melting temperatures we
extracted from the gNPT ensembles at different assigned en-
thalpy slightly differ. With four models applied in this study
shown in Figs. 1 and 4–6, we obtain a subtle but affirmatively
varying of the phase transition temperature in the coexistent
system with different phase-to-phase fractions. This depen-
dence should not be considered as merely a finite-size effect,
since we find no strong correlation between the deviation and
the applied size of the simulation systems. We look forward a
more comprehensive work to elucidate this effect in the future.
The deviation is small (usually smaller than 1 K), so that we
simply extract one of these value as the coexistent temperature
with a 1 K-level error, which already makes it become one of

the most precise methods in determining the phase transition
temperature nowadays.
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Fig. 5. The gNPT method determined the phase transition temperature
of the TIP4P-2005 water model. Cyan region refers to 252±5 K from
the free energy calculations, yellow region refers to 249± 3 K of the
direct coexistence route.[21]
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Fig. 6. The gNPT method determines the phase transition temperature
for the TIP4P-ICE water model. The melting point (272.2 K) proposed
in previous work[30] is plotted as the dash line.

We also give the results in two all-atom water models, as
shown in Figs. 5 and 6. A smaller system composed of 4584
water molecules is applied, and gNPT simulations with 40 ns
at most are run.

For the TIP4P-2005 water model, the obtained coexis-
tence temperature is 250.0± 0.6 K, matching with Tc(DC) =
249±3 K, Tc(FE) = 252±5 K, and Tc(DC) = 249.5±0.1 K
from previous researches.[5,21] The temperatures in the three
simulations with H = −4.25,−4.16,−4.06 come to almost
the same value within 20 ns. The further 20 ns data are

080505-5



Chin. Phys. B Vol. 29, No. 8 (2020) 080505

applied to estimate the coexistent temperature. The TIP4P-
ICE water model is known to have a better performance in
generating ice/water phase diagram. Its result Tc = 270.2±
0.3 K, as shown in Fig. 6, has an excellent consistency with
references.[5,30] All results and comparisons with literatures
are shown in Table 1.

To further explore the performance of this approach, we
carry out simulations with different sizes of systems. Three
gNPT simulations with 44800, 5971, 2030 water molecules
are built, corresponding approximately to the sizes of 151 Å×
156 Å× 58 Å, 54 Å× 58 Å× 58 Å, 52 Å× 56 Å× 22 Å,
respectively. These results are colored in red, as shown in
Fig. 7. They are respectively 275.1± 0.3 K, 275.0± 0.4 K,
and 275.2± 0.6 K, while the black one 275.1± 0.3 K is the
data presented in Fig. 4. The error bar only slightly increases
as the size of the simulation systems obviously decreases, and
in the smallest system with 2030 molecules, the precision of
the obtained melting temperature is still very good.

274.5
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105

275.0 275.5

Tm/K

N
a
to
m
s

Fig. 7. Finite-size effect in the gNPT method determines the phase tran-
sition temperature. Data from Fig. 4 is shown in black, the other data
is extracted from the simulations with 44800, 5971, and 2030 water
molecules, respectively.

Table 1. The coexistence temperature of the mW, TIP4P/2005, TIP4P/ice water and LJ models as obtained from different methods (free
energy calculations, Hamiltonian Gibbs–Duhem integration, direct coexistence technique, and the current GCE (gNPT) approach).

Method mW TIP4P-2005 TIP4P-ICE LJ
FE/Gibbs–Duhem 274.6±1[7] 252±6[30] 272±6 [30] 0.617[31]

DC –
249±3[21]

249.5±0.1[5]
268±2[32]

269.8±0.1[5] –

gNPT 275.1±0.3 250.0±0.6 270.2±0.3 0.619±0.003

5. Conclusion
It has been found that the GCE (or gNPT) approach is

very applicable of sampling metastable and unstable states of
thermodynamics, as we did in this work sampling phase coex-
istence in the ice/water and the LJ solid/liquid systems. The
GCE method can be applied to obtain directly the coexistent
temperature of two phases even via a single individual simu-
lation. Good precision of the approach can be reached even
in a smaller simulation system, and it is better than (at least
in comparable with) the other methods in the literatures with
much less calculation time. Therefore, the GCE method is a
highly efficient, accurate, and easy-to-use approach in deter-
mining the phase coexistent temperature.
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