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Moderate point: Balanced entropy and enthalpy
contributions in soft matter∗
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Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity
to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative defini-
tions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In
this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermo-
dynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order
parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation,
the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the
sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible
applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also
briefly discussed.
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1. Introduction

Named by Pierre–Gilles de Gennes in his Nobel Prize
lecture,[1,2] “soft matter” vaguely refers to a wide spectrum of
condensed materials, ranging from polymers, complex liquids,
liquid crystals to foams, colloids, gels, granular materials, and
biological materials. Various soft materials share some com-
mon features, such as significant entropic effect, large fluctu-
ations, sensitivity to thermodynamic conditions (particularly
a weak force can induce a large transformation), mesoscopic
characteristic spatial and temporal scales, and the ability of
self-assembly.[3] Despite successes in some individual fields,
such as polymers[4] and liquid crystals,[5] no general quanti-
tative definitions have yet been provided for soft matter, and
the intrinsic mechanisms leading to their common features are
unclear.

Regarding the subtle balance between entropy and en-
thalpy contributions in soft matter, the term “entropy–enthalpy
compensation” has been frequently carried out since 1950s,
aiming to quantitatively describe the unique characteristics
of soft matter (see, e.g., Refs. [6]–[14]). Initially, entropy–
enthalpy compensation was referred to the phenomenon that
a change in thermodynamic condition leads to almost identi-
cal changes in entropy and enthalpy, for the Helmholtz free
energy ∆F = ∆U − T ∆S ≈ 0 or for the Gibbs free energy
∆G = ∆H−T ∆S ≈ 0, where T is the system temperature, U
is the system total energy, H is the system enthalpy, and S is

the system entropy. In the term “entropy–enthalpy compensa-
tion”, “entropy” refers to T ∆S, the entropic effect caused by a
finite temperature and/or finite spatial degrees of freedom, and
“enthalpy” refers (not rigorously) to interactions among parti-
cles, either U or H, for the sake of simplicity. However, this
interpretation was doubted very likely an artifact caused by
inappropriate data analysis methods.[15,16] Recently, entropy–
enthalpy compensation has taken another form of

∆∆F = ∆∆U−T ∆∆S≈ 0, (1)

or

∆∆G = ∆∆H−T ∆∆S≈ 0. (2)

The physical interpretation of this form is that the free energy
cost ∆F or ∆G for a certain statistical process remains roughly
unchanged when the thermodynamic condition changes, at-
tributed to the compensated entropy change with respect to the
enthalpy change. Another term “entropy–enthalpy balance”
vaguely refers to the phenomenon that entropy and enthalpy
have comparable contributions under a certain thermodynamic
condition (see, e.g., Refs. [17]–[22]), yet frequently it takes the
same expression as Eq. (1) or (2).

The current forms of the above two terms, however, nei-
ther reveal the statistical physics essence of soft matter nor
provide a systematic explanation of the common features soft
materials exhibit. The problem may reside in the fact that dif-
ferent thermodynamic states are compared to looking for the
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balance or compensation between thermodynamic entropy and
enthalpy. Instead, in this paper, we will show that the balanced
condition is satisfied in a single thermodynamic state, whose
substates along an order parameter (or more general a reaction
coordinate) have various ratios of entropy and enthalpy con-
tributions rather than thermodynamic variables of entropy or
enthalpy. By looking into the substates of the free energy land-
scape along a predefined order parameter, we will define soft
matter as the materials working in the vicinity of a moderate
point, at which entropy and enthalpy contributions among sub-
states are well balanced (or have a minimal difference when
the exact balanced condition cannot be satisfied). This (quasi-
)balanced condition leads to the maximization of the order
parameter fluctuation around the moderate point, which ex-
plains the intrinsic large fluctuation of soft matter. The asso-
ciated response function also maximizes around the moderate
point, which explains the sensitivity of soft materials to ther-
modynamic conditions. Their mesoscopic temporal and spa-
tial scales may be explained by the maximization of the finite
spatial correlation length around the moderate point. For con-
venience, we will call our theory the moderation theory.

2. Theory
From now on, we assume that by default the system is in

the canonical ensemble, and “enthalpy” actually refers to the
system total energy. The essential idea of the moderation the-
ory is that the subtle balance between the entropy and enthalpy
contributions of soft matter should be reflected by the proba-
bility distribution (or equivalently the free energy landscape)
of all substates of a thermodynamic state (a state point in the
phase space). With an appropriately defined order parameter,
a thermodynamic system with very high dimensions (e.g., a
system with N particles in the 3-D space has 6N degrees of
freedom) is projected into a reduced phase space spanned by
the order parameter. Note that here “substates” are microstates
in the reduced phase space, not in the original full-dimensional
space. For simplicity, in this paper, only the case with one or-
der parameter h is considered, along with a generalized field
B conjugated with h. Nevertheless, it should be straightfor-
ward to generalize the theory to the cases with multiple order
parameters.

2.1. Free energy landscape

The Helmholtz free energy of a thermodynamic state
point is

F (β ,B) =− 1
β

lnZ (β ,B) , (3)

where β ≡ 1
kBT with kB being the Boltzmann constant, and

Z is the total partition function. In the reduced phase space

spanned by an order parameter h, a substate has the probabil-
ity density of

f (h;β ,B) = Z (h;β ,B)/Z (β ,B) , (4)

where Z (h;β ,B) = g(h;B)exp(−βU (h;β ,B)) is the par-
tial partition function with g(h;B) the density of states and
U (h;β ,B) the energy. The free energy of a substate can be
defined as

F (h;β ,B) =− 1
β

lnZ (h;β ,B) . (5)

Note that Z (β ,B) =
∫ +∞

−∞
Z (h;β ,B)dh and∫ +∞

−∞
f (h;β ,B)dh = 1 but F (β ,B) 6=

∫ +∞

−∞
F (h;β ,B)dh. The

free energy landscape of a state point along this order param-
eter is a collection of the free energies of all its substates.
Note that B is conjugate to the order parameter h, and does not
necessarily have to be a real external field.

2.2. Two-substate model

Without considering the generalized field B, for the sim-
plest case of a classical statistical system with only two sub-
states: entropy-dominated state 1 and enthalpy-dominated
state 2 after projecting into the phase space spanned by an
order parameter h, if the system energies of the two sub-
states are U1 and U2 with U1 > U2, the densities of states are
g1 and g2 with g1 > g2, and the associated order parameters
are h1and h2, then the system partition function is given by
Z (β ) = Z1 (β )+Z2 (β ), where Zi (β ) = gi exp(−βUi), i= 1 or
2, and the appearance probability Pi (β ) = Zi (β )/Z. The free
energies associated with the two substates are Fi =− 1

β
lnZi =

Ui− 1
β

lngi, i = 1 or 2. At low temperatures, F1 > F2, the sys-
tem is enthalpy-dominated; at high temperatures, F1 < F2, the
system is entropy-dominated. Therefore, it is natural to require

F1 = F2 (6)

at the moderate point when the system has the entropy and en-
thalpy contributions well balanced, which determines the tem-
perature at the moderate point

Tm =
U2−U1

kB (lng2− lng1)
. (7)

If the generalized field B is considered with U1 (B) >
U2 (B) and g1 (B) > g2 (B), in some cases the two substates
cannot have exactly balanced entropy and enthalpy contribu-
tions when varying B at a fixed temperature. Therefore, in-
stead of requiring F1 = F2, we now define the moderate point
as the one satisfying a looser condition,

|F1 (Bm)−F2 (Bm)|= Fd, (8)

where Fd≥ 0 is the smallest free-energy difference taken at the
moderate point B=Bm, which is determined by the mathemat-
ical feature of F1 (B) and F2 (B). To differentiate, the point sat-
isfying Fd = 0 (i.e., F1 = F2) will be called the exact moderate
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point, otherwise it will be called the general moderate point,
and the corresponding conditions are the exact moderate con-
dition and the general moderate condition, respectively.

In Appendix A, we prove that the order parameter fluctu-
ation Dh ≡

〈
h2
〉
−〈h〉2 maximizes at either the exact moderate

point or the general moderate point for the two-substate model,
where 〈h〉= P1h1 +P2h2 and

〈
h2
〉
= P1h2

1 +P2h2
2.

2.3. Continuous case

When the substates are continuous, it is unobvious what
kind of probability distributions have balanced entropy and en-
thalpy contributions. Our strategy is dividing the whole prob-
ability distribution into two parts by the ensemble average (ex-
pected value) of the order parameter 〈h〉: one side is entropy-
dominated and the other side is enthalpy-dominated. As de-
rived in Appendix B, based on the exact moderate condition
for the two-substate model given by Eq. (6), we obtain the ex-
act moderate condition for the continuous case

〈h〉= hm, (9)

where 〈h〉 =
∫ +∞

−∞
h f (h;β ,B)dh and hm is the median satisfy-

ing
∫ hm
−∞

f (h;β ,B) = 0.5. The general moderate condition is∣∣∣∣∫ 〈h〉hm
f (h;β ,B)dh

∣∣∣∣= Pd (β ,B) , (10)

where Pd (β ,B) ≥ 0 is the smallest possible deviation of the
integral from 0 determined by the mathematical feature of
f (h;β ,B). Note that when the difference between the entropy
and enthalpy contributions is too large, it is unreasonable to
still treat the system as a soft material. Nevertheless, usually
the difference varies continuously with thermodynamic vari-
ables (e.g., temperature), and there are no natural boundaries
distinguishing the “soft” region from other cases, a problem
similar to the definition of the exact glass transition point.

As shown in Appendix C, the maximization of the order
parameter fluctuation Dh with respect to the generalized field
B has to satisfy 〈

(h−〈h〉)3
〉
= 0. (11)

Under the assumption that the system energy U linearly de-
pends on h, the condition for the maximization of Dh with re-
spect to the temperature T (or equivalently β ) is also Eq. (11).
In Appendix D, we prove that the moderate condition given
by Eq. (10) naturally leads to Eq. (11). That is, the order pa-
rameter fluctuation Dh maximizes at either the exact moderate
point or the general moderate point for the continuous case.

2.4. Response function and spatial correlation length

In the linear response regime, the system Hamiltonian un-
der a generalized field B can be written as

U (h;β ,B) =U0 (h;β )−Bh, (12)

where U0 is independent of B, and the probability density func-
tion should have the form

f (h;β ,B) = g(h)exp(βBh−βU0 (h;β ))/Z (β ,B) . (13)

Since the total free energy is F =− 1
β

lnZ, the ensemble aver-
age of the order parameter

〈h〉=−
(

∂F
∂B

)
β

. (14)

The response function corresponding to B is

χ ≡
(

∂ 〈h〉
∂B

)
β

= βDh, (15)

where the order parameter fluctuation Dh ≡
〈
h2
〉
−〈h〉2 usu-

ally depends on both β and B.
According to Eq. (15), when varying the generalized field

B at a fixed β , the response function maximizes exactly at the
point Dh maximizes. When varying the temperature T (equiv-
alently β ), this relation does not hold, but numerically the
maximization of the response function appears at a point very
close to the maximization of Dh if Dh varies slowly around its
maximal point, as demonstrated in Appendix E.

The characteristic spatial scale can be quantified by the
spatial correlation length. In the linear response regime, the
spatial correlation length can be related to the response func-
tion as

1
β

χ (r)∼ 〈δh(0)δh(r)〉 , (16)

where r is the spatial interval, δh(r) ≡ h(r)− 〈h〉, and the
partial order parameter h(r) satisfies

h =
∫

∞

0
h(r)dr. (17)

In Appendix F, we show that the spatial correlation length
maximizes when Dh maximizes. On the other hand, no quanti-
tative connections can be established between Dh and the time
correlation length, but as a rule of thumb, in view of the vast
scale, for material systems, a larger spatial scale roughly corre-
sponds to a longer temporal scale. This might explain why soft
materials generally have mesoscopic characteristic spatial and
temporal scales, since microscopic scales correspond to short
correlation lengths and macroscopic scales correspond to di-
vergent correlation lengths, while soft materials work under a
thermodynamic condition in between.

3. Example of polyglutamine aggregation
The validity of the moderation theory was examined

with a simplified polypeptide aggregation model. Previously,
we simulated by coarse-grained molecular dynamics the ag-
gregation behaviour of polyglutamine molecules in aqueous
solution.[23,24] We found that, in equilibrium, the instanta-
neous configurations of polyglutamine molecules fluctuate
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from distributing almost uniformly to aggregating very tightly,
and the degree of aggregation decreases monotonically with
temperature but first increases and then decreases with con-
centration. Based on the simulation data, we then projected
this high-dimensional system into a one-dimensional phase
space spanned by the so-called heterogeneity order parameter
(HOP).[25] characterizing the degree of aggregation, defined
as

h =
1
N

N

∑
i=1

N

∑
j=1

exp
(
−r2

i j/2σ
2), (18)

where N is the number of polyglutamine molecules, ri j is the
distance between molecule i and molecule j corrected with the
periodic boundary condition, and σ = L/N1/3 with L being the
side length of the cubic simulation box. A larger value of HOP
represents a higher degree of aggregation. Both the density of
states g and the potential energy Up are represented by a func-
tion of h and L (directly corresponding to concentration). For
molecular systems with the Newtonian dynamics, the partition
function is Z = ZkZp, where Zk is the partial partition function
for the momentum space and

Zp (β ,L) =
∫

g(h;L)exp(−βUp(h;L))dh. (19)

Since the momentum space is independent of the configura-
tional space, Zk is always cancelled out and only Zp should be
considered during normalization.

For the system with 27 32-residue polyglutamines, by fit-
ting the simulation data, we determine the density of states

g(h;L) = g0h3 (h−14)6 exp
(
−
(
a1 +a2/L4)h

)
, (20)

and the potential energy

Up (h;L) =−a3

L
h+U0, (21)

where h ∈ [0,14], a1 = 5.8, a2 = 4.14 × 104 nm4, a3 =

2.660 nm ·eV, and g0 and U0 are undetermined constants. The
probability for a certain h to appear is therefore

P(h;β ,L) = g(h;L)exp(−βUp(h;L))/Zp (β ,L) . (22)

The generalized field associated with h is

B =
a3

L
− a1

β
− a2

βL4 , (23)

so that the configurational partition function can be written as

Zp =
∫ 14

0
g0h3 (h−14)6 exp(βBh−βU0)dh. (24)

In this model, the fluctuation of the order parameter is a
function of both temperature and concentration Dh (β ,L). In
Fig. 1(a), the red line depicts the thermodynamic states at
which Dh (β ,L) takes the largest possible value of 4.1869.
It is interesting to see that, below the critical temperature

Tc = 316.4 K, each Tm has two corresponding L values, resem-
bling the liquid-vapour phase transition of a finite-size system.
For temperatures above Tc, Dh cannot be as large as 4.1869,
and the thermodynamic states with the largest Dh are drawn
with a green line. In the same plot, the thermodynamic states
determined by Eq. (10) are drawn with black lines, which al-
most perfectly overlap with the red and green lines, indicating
that the order parameter fluctuations maximize at the moderate
points. As shown in Figs. 1(b) and 1(c), below Tc, the entropy
and enthalpy contributions are perfectly balanced at the exact
moderate point and the maximal Dh always takes the largest
possible value of 4.1869; above Tc, with increasing tempera-
ture, the entropy contribution becomes larger and larger than
the enthalpy contribution, and the maximal Dh at the general
moderate point becomes smaller and smaller.
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Fig. 1. (a) Thermodynamic states with the largest fluctuation of the or-
der parameter (red and green lines) and the moderate points determined
by Eq. (10) (black lines). (b) Smallest probability difference defined in
Eq. (10) as a function of temperature. (c) The largest order parameter
fluctuation as a function of temperature.

The probability density distributions f (h) at an arbitrar-
ily chosen concentration L = 15 nm and various temperatures
are plotted in Fig. 2(a). According to Fig. 1, the moderate-
point temperature at this concentration is Tm = 296.5 K. At
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the low temperatures of 210 K and 250 K, due to the domi-
nated enthalpy contribution, polyglutamine molecules aggre-
gate tightly, leading to larger probabilities for larger h values.
In contrast, smaller h values have larger probabilities at the
high temperatures of 350 K and 390 K when the entropy effect
dominates. In between, at the moderate point Tm = 296.5 K,
the distribution of f (h) is almost symmetric, resulting in the
largest HOP fluctuation near this point.
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Fig. 2. Probability density distributions at (a) L = 15 nm and various
temperatures, and (b) T = 360 K and various concentrations.

For a fixed temperature, varying L can also change the
balance between entropy and enthalpy. The distributions at an
arbitrarily selected T = 360 K and various concentrations are
plotted in Fig. 2(b). According to Fig. 1, the corresponding
moderate-point box size Lm = 12.435 nm, at which f (h) is
broader than the distributions at any other concentrations by
satisfying Eq. (10), although it is still asymmetric.

The response function χ corresponding to h has been cal-
culated according to Eq. (15) and are shown in Fig. 3. As
shown in Fig. 3(a), χ = βDh at L = 15 nm also exhibits a
peak, but the corresponding temperature is 292.7 K, slightly
different from Tm = 296.5 K due to the prefactor β . On the
other hand, it is not surprising that at T = 360 K, χ reaches its
maximum at the moderate point Lm = 12.435 nm (Fig. 3(b)),
since the prefactor β is now a fixed value. Maximization of the
response function around the moderate point manifests that, in
the vicinity of the moderate point, a small change in the gener-
alized field conjugate to the order parameter results in a large
change of the order parameter. In other words, the system
is very sensitive to the change of thermodynamic conditions.
Two examples are the sensitivity of peptide self-assembly to

temperature change.[26,27] and the sensitivity of ionic liquid
properties to molecular structure.[28,29]
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Fig. 3. Response functions at (a) L= 15 nm as a function of temperature
and (b) T = 360 K as a function of concentration.

4. Examples of possible applications
The moderation theory should be quite general and should

be able to be applied to most (if not all) soft materials. A pos-
sible application of the two-substate model moderation the-
ory could be the case of chemical bond breaking and reforma-
tion. If all microsates of a chemical bond can be grouped into
only two substates independent of temperature: the enthalpy-
dominated connected state and the entropy-dominated broken
state, then at the moderate temperature given by Eq. (7), the
chemical bond has equal probabilities of being connected or
broken. Well above the moderate temperature, the bond is
broken most of the time due to thermal fluctuation, and is con-
nected most of the time well below the moderate temperature.
This simplified picture might be helpful for understanding the
functions of hydrogen bonds in biological systems.

Another possible application is the determination of the
best working temperature of biochannels. A biochannel works
the best when the difference between the open state and the
close state, modulated by a binary variable (e.g., binding and
unbinding of an ion on a specific binding site) B = B0 or B1,
is the largest. If we choose the width of the channel to be the
order parameter h, the difference is

〈∆h(β )〉= 〈h〉(β ,B1)−〈h〉(β ,B0) . (25)

If the system energy U linearly depends on h, the maximiza-
tion requirement ∂

∂β
〈∆h(β )〉= 0 leads to the condition at the

moderate point

Dh (βm,B1) = Dh (βm,B0) . (26)

Alternatively, integrating the first part of Eq. (15) leads to

∆h(β ) =
∫ B1

B0

χ (β ,B)dB. (27)

Along with the second part of Eq. (15), we obtain

βm =−
∫ B1

B0
Dh (β ,B)dB∫ B1

B0
∂

∂β
Dh (β ,B)dB

. (28)

Either Eq. (26) or Eq. (28) can be used to determine the best
working temperature of a biochannel.
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5. Conclusions and discussion

In summary, we developed the moderation theory for soft
matter by defining the moderate point of a statistical system at
which the entropy and enthalpy contributions among substates
along an order parameter perfectly balance each other or have
a minimal possible difference. The order parameter fluctuation
maximizes around the moderate point. Soft materials work in
the vicinity of the moderate point, which explains their sen-
sitivity to thermodynamic condition changes via the relation
between the order parameter fluctuation and the associated re-
sponse function. The mesoscopic characteristic spatial and
temporal scales of soft matter are also explained by the maxi-
mization of the finite spatial correlation length at the moderate
point. The moderation theory was validated by the simplified
statistical model for polyglutamine aggregation, and its possi-
ble applications to switching chemical bonds and biochannels
were also briefly discussed. The moderation theory is antici-
pated to form the basis of the theoretical framework providing
a quantitative definition for soft matter.

An important feature of the moderation theory is that the
moderate point heavily depends on the order parameter be-
cause a specific choice of an order parameter reflects the per-
spective of the study for a given soft material. In addition, it
is worth emphasizing that, the maximization of the response
function is not always exactly at the moderate point, and there
are no distinct boundaries for the entropy and enthalpy differ-
ence dividing the “soft” and “non-soft” regions of the system,
reflecting the “softness” feature of soft matter.

More questions related to the moderation theory for soft
matter are open for investigation. Figure 1 demonstrates that
the polyglutamine aggregation model resembles a liquid–gas
phase transition of a finite-size system, and the line above
the critical temperature is very likely the so-called Widom
line.[30–32] Therefore, the relations between the moderation
theory and the phase transition of a finite-size system as well
as the Widom line are worth investigating. In addition, it is
interesting to see how the current terminologies of entropy–
enthalpy compensation and entropy–enthalpy balance fit in
the moderation theory. Finally, the moderation theory might
help to explain why soft matter can self-assemble into ordered
structures, a unique feature of soft matter very important in
various scientific areas including physics, chemistry, biology,
and materials science.
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Appendix A: Maximizatin of order parame-
ter fluctuation at moderate points for the two-
substate model

For the two-substate model, since the free energies

Fi =−
1
β

lnZi =−
1
β
(lnPi + lnZ) (A1)

with Pi the probability and Zi the partial partition function for
substate i, i = 1 or 2, and Z the total partition function, when
assuming P1 ≥ P2 (i.e., F1 ≤ F2), the moderate condition

|F1−F2|= Fd (A2)

is equivalent to

P1/P2 = cP, (A3)

where cP ≡ exp(βFd) ≥ 1 is the smallest possible ratio be-
tween P1 and P2. Along with the normalizing condition
P1 +P2 = 1, we have

P1 =
cP

1+ cP
, P2 =

1
1+ cP

. (A4)

The order parameter fluctuation

Dh ≡
〈
h2〉−〈h〉2 = cP

(1+ cP)
2 (h1−h2)

2 . (A5)

When varying temperature T , one can always find a moderate
temperature Tm = U2−U1

kB(lng2−lng1)
with gi and Ui, i = 1 or 2 the

density of states and total energy, respectively, to have cP = 1,
which leads to the largest possible Dh, namely, Dh maximizes
at the exact moderate point. When varying the generalized
field B, sometimes the smallest possible cP is larger than 1. In
this case, let D′h be the order parameter fluctuation correspond-
ing to an arbitrary c′P = cP + x with x > 0, then

D′h−Dh =
x
(
1− xcP− c2

P
)

(1+ cP + x)2 (1+ cP)
2 (h1−h2)

2 < 0. (A6)

Therefore, Dh also maximizes at the general moderate point
when varying the generalized field B. Since the expression of
Dh does not change when switching h1 and h2, it is obvious
that the same conclusion is also valid for the case P1 ≤ P2.

Appendix B: Moderate conditions for the contin-
uous case

We map a continuous case to the two-substate model by
dividing the continuous probability density function f (h) ≡
g(h)exp(−βU (h))/Z into two parts at the expected value
of the order parameter 〈h〉, and regard these two parts as the
entropy-dominated state 1 and enthalpy-dominated state 2 in
the two-substate model, whose partial partition functions

Z1 ≡ Z
∫ 〈h〉
−∞

f (h)dh and Z2 ≡ Z
∫ +∞

〈h〉
f (h)dh. (B1)
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According to the exact moderate condition for the two-
substate model F1 = F2, the exact moderate condition for the
continuous case is then∫ 〈h〉

−∞

f (h)dh =
∫ +∞

〈h〉
f (h)dh. (B2)

Since the definition of the median hm is∫ hm

−∞

f (h)dh =
∫ +∞

hm
f (h)dh = 0.5, (B3)

the above condition is equivalent to

〈h〉= hm. (B4)

The general moderate condition for the continuous case
can also be derived from the condition for the two-substate
model given by Eq. (A2) as follows. For convenience, first
we still assume F1 ≤ F2, then for the continuous case, equa-
tion (A2) leads to

Z1

Z2
= exp(−βFd)≡ cP ≥ 1. (B5)

Utilizing the definition of the median Eq. (B3) and define

R≡
∫ 〈h〉

hm
f (h)dh, (B6)

equation (B5) can be written as

0.5+R
0.5−R

= cP. (B7)

Therefore, we have the general moderate condition for the
continuous case

R≡
∫ 〈h〉

hm
f (h)dh = Pd, (B8)

where Pd ≡ 0.5− 1
1+cP

≥ 0 has the smallest possible value.

When cP ≡ Z1
Z2

= 1, the above condition reduces to the exact
moderate condition Eq. (B4). To allow Eq. (B8) hold for the
case F1 ≥ F2, it should be generalized to

|R| ≡
∣∣∣∣∫ 〈h〉hm

f (h)dh
∣∣∣∣= Pd (B9)

with Pd ≥ 0 the smallest possible value, which is the general
moderate condition for the continuous case.

Appendix C: Condition for the maximization of
order parameter fluctuation for the continuous
case

The order parameter fluctuation is generally a function
of temperature and generalized field Dh (β ,B). When fixing
the temperature, the generalized field value Bm maximizing
Dh (β ,B) must satisfy (

∂Dh

∂B

)
β

= 0. (C1)

In the linear response regime, the system Hamiltonian

U (h) = Bh−U0 (h) , (C2)

so the system partition function

Z =
∫ +∞

−∞

g(h)exp(βBh−βU0)dh. (C3)

Put Dh ≡
〈
h2
〉
−〈h〉2 into Eq. (C1) and utilizing Eq. (C3), we

obtain the condition for Dh to maximize with respect to B(
∂Dh

∂B

)
β

= β

(〈
h3〉−3

〈
h2〉〈h〉+2〈h〉3

)
= β

〈
(h−〈h〉)3

〉
= 0. (C4)

If the system energy linearly depends on the order parameter
U = ah with a a constant, the same mathematical procedure
also leads to (

∂Dh

∂β

)
B
= a

〈
(h−〈h〉)3

〉
= 0. (C5)

Therefore, the requirement for Dh to maximize is equivalent
to the condition 〈

(h−〈h〉)3
〉
= 0. (C6)

Appendix D: Maximization of order parameter
fluctuation at moderate points for the continuous
case

Let P1 ≡ R+0.5 =
∫ 〈h〉
−∞ f (h)dh. When P1 > 0.5, the dis-

tribution f (h) has a positive skewness, so
〈
(h−〈h〉)3

〉
> 0; at

the same time, a larger P1, i.e., a more positively skewed distri-
bution, has a more left-shifted mean value 〈h〉, so

(
∂ 〈h〉
∂P1

)
β

< 0.

Therefore, when the temperature is fixed, the order parameter
fluctuation Dh changes with P1 as(

∂Dh

∂P1

)
β

=

(
∂Dh

∂B

)
β

(
∂B

∂ 〈h〉

)
β

(
∂ 〈h〉
∂P1

)
β

=

〈
(h−〈h〉)3

〉
Dh

(
∂ 〈h〉
∂P1

)
β

< 0. (D1)

That is, when P1 > 0.5 (R > 0), Dh monotonically decreases
with increasing P1.

When P1 < 0.5, f (h) has a negative skewness, so〈
(h−〈h〉)3

〉
< 0; at the same time, a larger P1, i.e., a less

negatively skewed distribution, has a more right-shifted mean
value 〈h〉, so we still have

(
∂ 〈h〉
∂P1

)
β

< 0, and

(
∂Dh

∂P1

)
β

=

〈
(h−〈h〉)3

〉
Dh

(
∂ 〈h〉
∂P1

)
β

> 0. (D2)
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That is, when P1 < 0.5 (R < 0), Dh monotonically increases
with increasing P1.

When P1 = 0.5 (R = 0), 〈h〉= hm, f (h) has a zero skew-
ness, the system is at the exact moderate point and Dh reaches
its maximal value. For the general case satisfying Eq. (B9),
since Dh monotonically decreases with |R|, at the general mod-
erate point, the system still has an order parameter fluctuation
Dh as large as possible.

The above is also true when fixing B and varying β under
the assumption that the system energy U (h) linearly depends
on h. Note that the above arguments are based on the fact that
f (h) has the mathematical form of a Boltzmann distribution
and not necessarily true for an arbitrary distribution.

Appendix E: Maximization of response function
In the linear response regime,

f (h;β ,B) = g(h)exp(βBh−βU0)/Z (β ,B) , (E1)

where Z (β ,B) =
∫ +∞

−∞
f (h;β ,B)dh. Since the system free en-

ergy F =− 1
β

lnZ, its derivative with respect to B is(
∂F
∂B

)
β

=− 1
βZ

(
∂Z
∂B

)
β

=−〈h〉 . (E2)

The corresponding response function

χ (β ,B)≡
(

∂ 〈h〉
∂B

)
β

= β

(〈
h2〉−〈h〉2)= βDh (β ,B) . (E3)

Therefore, when β is fixed and B varies, the response function
χ maximizes exactly at the point when Dh maximizes. How-
ever, when B is fixed and β varies, χ does not maximize at the
point Dh maximizes. Below we will show that the difference
between the points for χ and Dh maximize when varying β is
small if Dh changes slowly around its maximization point.

Suppose χ (β ) maximizes at the point β0, we have(
∂ χ

∂β

)
B
(β0) = Dh (β0)+β0

(
∂Dh

∂β

)
B
(β0) = 0

⇒
(

∂Dh

∂β

)
B
(β0) =−

Dh (β0)

β0
. (E4)

On the other hand, suppose D(β ) maximizes at another point
β1 :

(
∂Dh
∂β

)
B
(β1) = 0, and β1 is not far from β0. By perform-

ing the Taylor expansion for Dh (β ) near β0, we have

Dh (β1) = Dh (β0)+

(
∂Dh

∂β

)
B
(β0)(β1−β0)+∆

(
(β1−β0)

2
)

⇒ Dh (β1)−Dh (β0)≈
(

∂Dh

∂β

)
B
(β0)(β1−β0)

=−Dh (β0)

β0
(β1−β0) . (E5)

Therefore, the relative deviation of the point for maximization
is

β1−β0

β0
≈ Dh (β0)−Dh (β1)

Dh (β0)
. (E6)

The above equation indicates that, the deviation of the tem-
perature at which χ maximizes away from the temperature at
which Dh maximizes is small if Dh varies slowly around its
maximization temperature.

Appendix F: Maximization of spatial correlation
length

In the linear response regime, the response function can
be connected to the spatial correlation by

1
β

χ (r)∼ 〈δh(0)δh(r)〉 , (F1)

where r is the relative distance between two locations, χ (r)
is the partial response function with χ =

∫ +∞

0 χ (r)dr, and
δh(r) ≡ h(r)− 〈h〉 is the local fluctuation of the order pa-
rameter h. If we denote the length of the characteristic spatial
scale as ξ , then the spatial correlation function follows the
Ornstein–Zernike function as

〈δh(0)δh(r)〉 ∼ 1
rp exp

(
− r

ξ

)
, (F2)

where p is a constant determined by dimension and critical-
ity. As r increases, the power-law term decays quickly and
the exponential term dominates, so we approximately have
〈δh(0)δh(r)〉 ∼ exp(−r/ξ ), and thus∫ +∞

0

1
β

χ (r)dr ∼
∫ +∞

0
exp(−r/ξ )dr⇒ Dh =

1
β

χ ∼ ξ , (F3)

which means that the characteristic spatial correlation length
maximizes at the moderate point when Dh maximizes.
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