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Abstract
The Poisson–Boltzmann (PB) theory is one of the most important theoretical models describing
charged systems continuously. However, it suffers from neglecting ion correlations, which
hinders its applicability to more general charged systems other than extremely dilute ones.
Therefore, some modified versions of the PB theory are developed to effectively include ion
correlations. Focused on their applications to ionic solutions, the original PB theory and its
variances, including the field-theoretic approach, the correlation-enhanced PB model, the
Outhwaite–Bhuiyan modified PB theory and the mean field theories, are briefly reviewed in this
paper with the diagnosis of their advantages and limitations.

Keywords: Poisson–Boltzmann theory, ion correlation, ionic solution, field-theoretic approach,
mean field theory
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1. Introduction

Theoretical descriptions of charged systems are very impor-
tant for a wide range of applications, such as the interfacial
phenomena of aqueous solutions [1–3] and the structure and
dynamics of biomolecules [4–6]. Among various kinds of
theories, the Poisson–Boltzmann (PB) theory initially devel-
oped by Debye and Hückel [7] in 1923 is the most famous
one. The PB theory is particularly useful in depicting ionic
solutions, for which it serves as a mesoscopic continuous
model describing the average potential distribution of ionic
solutions. Once the potential distribution is determined,
physical properties such as activity and osmotic coefficient
can be calculated with the knowledge of statistical physics.
Because of their simplicity, the PB theory and its linearized
version, the Debye–Hückel (DH) theory, are widely used
in many scientific occasions, including investigating the

electrostatic and thermodynamic properties, such as activity
coefficient, solvation energy, and so on [8, 9], of ionic solu-
tions and charged molecules.

It is well known that the PB theory is on the basis of key
approximations we will introduce below that limit its
applicability to extremely dilute solutions whose ion corre-
lation effect is negligible. Therefore, the PB model can
completely fail in some practical scenarios [10]. For example,
DNA and many protein molecules are so highly charged that
the electrostatic correlation effect cannot be neglected [6, 11].
It is worth noting that the PB theory may in some occasions,
e.g. calculating thermodynamic properties for densely
charged systems, provide reasonable results due to error
cancellation. However, it is by chance and cannot serve as a
routine treatment to dense systems.

As illustrated in figure 1, in order to yield more accurate
solutions for a wider range of charged systems, a variety of
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theoretical models, either based on the PB theory or not, have
been developed [12–14]. Interestingly, most of them are
connected to the PB theory, either through the form of
equation or through the form of solution, which in turn
manifests the importance of the PB theory.

This review is organized as follows. The derivation of the
original PB theory is shown in section 2, along with detailed
discussion of the approximations used in the derivation. In
section 3, the field-theoretic (FT) approach for calculating the
partition function is reviewed, and as a consequence a set of
self-consistent equations are obtained by the variational
method. In section 4, we introduce our correlation-enhanced
PB model along with the Outhwaite–Bhuiyan modified PB
(MPB) theories. Finally, a set of mean field theories including
the dressed-ion theory (DIT) and the molecular Debye–Hückel
(MDH) theory are reviewed in section 5. In the appendix, the
integral equation theory is briefly introduced as the concepts
are used in the MPB theories as well as the mean field theories.
The SI unit is used by default unless the use of the Gaussian
unit is explicitly declared. It should be noted that this brief
review is more titled to serve as a manual for beginners, so
some most recent advanced theoretical and numerical pro-
gresses, such as the concentration-dependent dielectric model
[15, 16], are not reviewed due to the limited space.

2. The PB theory

The PB theory is originally derived by Debye and Hückel in
1923 [7]. It is formally a Poisson’s equation with the charge
density distribution obeying the Boltzmann distribution. The
original PB equation is a nonlinear equation which is usually
hard to solve analytically. Debye and Hückel then implement
some approximations to linearize the original PB equation,
leading to the linearized PB equation, or the DH equation [17],

which can be solved analytically and end up with the Yukawa
potential. The activity coefficients calculated by the DH
equation at the low-concentration limit fit the experimental
values very well, but deviate more severely at a higher con-
centration due to the approximations incorporated in the DH
equation [17].

2.1. Derivation of the original PB theory

The derivation of the PB theory can be found in [17] and we
summarize it as follows. The first approximation made in the PB
theory is neglecting the inner structure of particles. For an
aqueous ionic solution, water is treated as a continuous back-
ground with the relative dielectric constant e, and ions are
assumed to be point charges. For an infinitely large domain
consisted of N ions located at r r r, , , ,N1 2 the electric potential
of the system at r is
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which satisfies Poisson’s equation
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where e0 is the dielectric constant of vacuum, qi is the charge of
the ith ion, and ( )r r is the charge density at r. In a homo-
geneous charge-neutral system, the solution of ( )y r is zero
everywhere. To obtain useful information, we fix an ion at r1

and study the electrostatic potential at r:
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Since the positions of other ions fluctuate, we find the
canonical ensemble average of ( )y r r, 1 to be:
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where ( )=U U r r r, ,..., N1 2 is the potential energy and b º
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with kB the Boltzmann constant and T the temperature. Taking
the Laplacian with respect to r on both sides:
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Figure 1. Schematic of a charged system which can be described by
the PB theory. When the correlation effect illustrated by the halos
around point charges is significant, the original PB theory may fail
and enhanced PB theories are on demand.
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The average density distribution ( )rá ñr r, 1 is related to the
radial distribution function (RDF) ( )g r r, 1 by

( ) ( ) ( )årá ñ =r r c q g r r, , , 6
s

s s s1 1 1

where cs is the bulk number concentration of the s-type ions and
( )g r r,s1 1 is the RDF of s-type ions about the central ion located

at r .1 Note that the mean potential ( )yá ñr r, 1 and the RDF
( )g r r,s1 1 depend only upon ∣ ∣-r r ,1 we can use r instead of

( )r r, 1 to simplify the notations.

The potential of mean force (PMF) was further utilized for
finding the solution of the above equation [18]. We Consider
the mean force exerted on the ion at r2 with the fixed ion at r :1
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In the above derivation, the ion number N and the partition

function  ò ò= b-Z r re d dU
N1 are independent of r ,2 so

( )-N N Z1 can be inserted to obtain the definition of the
RDF. We then define

( ) ( ) ( )
b

º -w r r g r r,
1

ln , . 82 1 2 1

Obviously the negative gradient of ( )w r r,2 1 is the mean
force, so ( )w r r,2 1 is called the PMF. Similarly, the PMF
depends only upon the distance ∣ ∣-r r2 1 , then we have

( ) ( )b= -g r w rIn .
Combining equations (5), (6), (8) together, we have
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The second approximation is that the PMF ( )w rs1 is
replaced by ( )yq r ,s where the mean potential energy

( ) ( )y yº á ñr r , which leads to the PB equation:
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When the third approximation of linearization (expand-
ing the exponent to the first order) is taken, the PB theory is
further simplified to be the analytically solvable DH equation:
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The solution of the DH equation for a point charge in an
infinitely large domain is a screened Coulomb potential,
named the Yukawa potential:
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where the Debye screening length k1 is defined by
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The physical properties such as RDF, activity coefficient,
and osmotic coefficient can be calculated once the potential is
known [17].

The PB equation is difficult to be solved due to the
nonlinearity. However, in some special cases it is possible to
find the analytical solutions. For example, the PB theory can
be applied to electrolytes with a charged plate, and the result
is known as the Gouy–Chapman theory [19]. More generally,
the PB equation is solved by numerical methods such as the
finite difference method, finite element method, and so on.
Accelerate techniques such as conjugate gradient method, fast
multi-pole method, and fast Fourier transform-based approa-
ches are also used to solve the PB equation numerically [20].

2.2. Limitations

The PB theory neglects molecular structures (exclusive
volume effects) of ions and solvents. As a result, the structural
properties calculated by the PB theory may deviate sig-
nificantly from the real solutions. For example, the RDF for
an ionic aqueous solution described by the PB theory is
essentially the density distribution with respect to a hard
sphere and the central ion is treated as a boundary condition,
so the RDF has the feature of a gas, i.e. with only one peak
and decaying monotonically [21]. In real solutions, however,
a typical RDF always has a valley at about 0.5 nm, which is
about the size of a water molecule, because that space is
occupied explicitly by water molecules [22].

In most application scenarios, however, the exclusive
volume effect only has a minor influence because thermo-
dynamic properties such as solvation energy are the major
focus of interest. Implicit solvent models are studied by
researchers to evaluate the solute PMF, which determines the
statistical weight of solute conformations and therefore allows
molecular simulations without explicit solvent molecules [23].
When the solution goes to the high concentration limit, i.e. near
close packing, the PB theory completely fails due to the sig-
nificant exclusive volume effect. In this case, the integral
equation theory (see appendix) with the Percus–Yevick (PY) or
Hypernetted Chain (HNC) approximation can be employed to
calculate the distribution function [24]. In particular, the HNC
approximation is known to be very accurate for the charged
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hard-sphere model. However, the integral equation method
cannot be applied to problems involving boundaries.

The second approximation of replacing the PMF by the
potential energy ( )yq r in the PB theory neglects ion corre-
lations, which is however most of the time important due to
the long-range nature of electrostatic interaction. Many phe-
nomena such as overcharge [25–29], like-charge attraction
[30–34], and opposite-charge repulsion [35] have correlations
and thus cannot be satisfactorily described by the PB theory.
Particularly, the charge effect plays an essential role in most
biomolecular systems, but many of them, such as protein and
DNA [4–6, 25], cannot be effectively described by the PB
theory because they are highly charged with strong ion
correlations.

2.3. Asymmetry problem

It should be noted that there is an inconsistency in the PB
equation related with the approximation of ( ) ( )y»w r q r , as
firstly revealed by Onsager [36]. Let us consider the average
concentration of ions of species i at a distance r from a given
ion of species j:

( ) ( ( )) ( )b= -n r n w rexp , 14ji i ji

and vice versa

( ) ( ( )) ( )b= -n r n w rexp , 15ij j ij

where ni is the number density of species i under no constraint.
We expect that ( ) ( )=w r w rij ji since w is the reversible work
expended in bringing the two ions i and j from infinity to dis-
tance r. The PB theory is on the basis of the approximation that

( ) ( ) ( )y=w r q r 16ji i j

according to equation (14) and

( ) ( ) ( )y=w r q r 17ij j i

according to equation (15). One may expect that

( ) ( ) ( )y y=q r q r . 18i j j i

The above cannot be true except when =i j. Therefore, the
PB solution cannot hold due to nonlinearity except in the sym-
metric case.

However, it is easy to show that the Yukawa potential in
equation (12), the solution for the DH equation, satisfies
equation (18). In fact, the DH equation is practically more
frequently used because it is linear and has analytic solutions.
The most successful application of the DH equation is the
calculation of activity coefficient g, which agrees very well
with experiment at the low concentration limit [17],

∣ ∣ ( )g
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pe e
= - + -q q

k T
ln

8
. 19

0 B

Therefore, the DH theory is called the exact limiting law
for ionic solutions. Although it is originated from error can-
cellation, this result suggests that the DH theory is a necessary
step in deriving the exact limiting theory. Therefore, the
Yukawa potential can be used to develop mean field
descriptions for ionic solutions. The DIT [37, 38] developed
by Kjellander and Mitchell has an asymptotic solution taking
the form of the Yukawa potential but including effective
charges and a dielectric constant, which is exact as long as the
effective parameters are correctly determined. The MDH
theory [39, 40] developed by Xiao and Song suggests a multi-
Yukawa potential, which is also exact if the coefficients can
be correctly obtained.

3. FT approach

The FT approach provides a way for solving the many-body
partition function by transforming the partition function into a
functional integration [41–43] through the Hubbard–Strato-
novich (HS) transformation [44]. The functional form of the
partition function can then be solved by various methods. For
example, the simplest approximation is known as the saddle-
point approximation which recovers the original PB equation;
it can also be solved with the perturbation method [45] and
the variational methods [46–50] to obtain more accurate self-
consistent equations for depicting ionic systems.

3.1. Formulism

The HS transformation is the key of the FT approach. To
understand it, we consider a toy model with the grand
canonical partition function:
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where lC and eC are just two mathematical parameters. In
order to solve the partition function, one can transform the
summation into integrals by noting the two identities
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The Gaussian identity can be generalized to multiple
species as
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and to the continuous case [41] as
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where ( )x r is a field variable used to decouple the quadratic
interaction on the left hand side.

Let us consider a typical charged particle system con-
sisting of +n cations and -n anions whose Hamiltonian is

( ) ( ) ( ) ( )ò r r= ¢ ¢ ¢H
e

r r r C r r r
2

d d , , 26
2

where ( )re r is the total charge density and ( )¢C r r, is the
Coulomb operator defined by

· [ ( )] ( ) ( )e e d-  ¢ = ¢C r r r r, , . 270

The grand partition function of a charged particle
system is
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where n are the number densities of cations and anions, m
are the chemical potentials, and ( )+ -Q n n, is the canonical
partition function:
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Applying the HS transformation equation (25) and define
a dimensionless field j b xº e , the grand partition function
becomes [47]
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Z
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1
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where ZC is the associated partition function. The action [ ]jL
in the functional integral is defined as
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2 is the rescaled permittivity, z are the

valences of ions, and l are the fugacities [47]. The saddle

point for the action, =d
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can be obtained by the

Euler–Lagrange equation
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+
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-
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which retrogresses into the PB equation if ji 0 is regarded as
the average potential.

3.2. Approximate solutions

The grand partition function equation (30) can be solved with
more sophisticated methods to obtain a MPB equation
including fluctuation and correlation effects. The variational
methods are used by several groups to obtain MPB equations.
The most commonly used reference action has the Gaussian
form [47, 48, 51]:
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where ( )j r is the dimensionless field appeared in
equation (30), ( )¢G r r, is a correlation function which could be
the incremental potential in section 4.1, and ( ) ( )f b yºr e r
corresponds to the average electrostatic field. The variational
free energy is

[ ] [ ] ( )j j= + á - ñF F L L , 34ref ref ref

where the average is taken in the reference ensemble with
action L .ref Minimizing the free energy functional with respect
to f and G, we obtain the self-consistent equations [47, 52]
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The term ( )u r appeared in the exponent is called the self-
energy that includes the correlation and fluctuation effects.

The continuous FT approach is generalized to a hardcore-
ion model by Loubet et al [49] to study the liquid–vapor
phase transformation. A dipolar PB theory [53] is also
developed by treating water molecules as explicit dipoles
rather than implicit continuous medium.

The FT approach is useful in calculating dielectric con-
stants [54] but the validity of the Gaussian functional is
questionable [51]. We have previously shown that the RDFs
calculated by the self-consistent equations, equations (35)–
(37), match the molecular dynamics (MD) simulation results
only for counter-ions [21]. In addition to the variational
methods, a systematic perturbative expansion [41] has been
performed by Netz and Orland to solve the partition function
by a loop-wise expansion of the action around the saddle
point, which indicates that the zero-loop equation is just the
ordinary PB equation and the one-loop correction yields
similar results as the variational methods.

4. MPB equations with correlations

The ion number distribution in the PB theory is assumed to
satisfy the Boltzmann distribution

( ) ( ( )) ( )r r b y= -r q rexp , 380
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where r0 is the bulk number density and =q ze is the amount
of charge.

Since the Boltzmann distribution is exact only for ideally
non-interacting particles, the difference between ( )yq r and
PMF ( )w r reflects the physical features neglected in the PB
theory, i.e. ion size, molecular details of solvent, fluctuation,
and ion correlation. On the other hand, the ion distribution
with respect to a reference particle, i.e. the RDF, has the
following exact relationship with the PMF (equation (8)):

( ) ( ( )) ( )r b= -g r w rexp . 390

Therefore, a more accurate theory may be achieved by
dealing with the PMF. In this section, we introduce a corre-
lation-enhanced PB equation developed by us [21], as well as
the more sophisticated MPB theories developed by Outhwaite
and Bhuiyan [55–57].

4.1. Correlation-enhanced PB model

Considering a two-species ionic system with valences z and
an average electrostatic potential ( )y r , the correlation effect
can be quantified by inserting a test ion. We initially assume
that the system obeys the PB equation, so that when the
system is fully relaxed to a new equilibrium state after the
insertion of the test ion, the average potential is perturbed to
be ( ) ( )y + ¢r G r r, , where ( )¢G r r, is the incremental
potential due to the test ion. For simplicity, we define the
dimensionless potential f b yº e , exactly the same as the one

defined in section 3.2, and the Bjerrum length º b
pe e

l ,e
B 4
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the PB equation with and without the test ion is

[ ( ) ( )] [

( )]
( )

( ) ( )

( ) ( )

f p r

r d

- + ¢ =

+ + - ¢

f

f

 + +
- - ¢

- -
- - ¢



+ + 

- - 

r G r r l z

z z r r

, 4 e

e

40

z r z G r r

z r z G r r

2
PB B s

,

s
,

PB

PB

and

( ) ( )f p r r- = +f f
+ +

-
- -

-+ -l z z4 e e , 41z z2
PB B s s

PB PB

where the subscript ‘PB’ stands for the solution to the original
PB equation, r +s and r -s are bulk number densities of the two
ion species. By comparing the two equations, we obtain the
expression for ( )¢G r r, :
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Equation (42) indicates that two factors contribute to
( )¢G r r, : the presence of the test ion and the change of

surrounding ions due to the presence of the test ion. There-
fore, the correlation effect caused by the insertion of the test
ion can be quantified by subtracting ( )¢G r r, from the
potential of the test ion itself ( )¢G r r, ,0 and the correlation
term ( )u r , which is just the self-energy, is determined by

( ) ( ) [ ( ) ( )]

( )

¢ = ¢ = ¢ - ¢
 ¢


 ¢

 u r u r r G r r G r rlim , lim , , .

43
r r r r

0

The self-energy is then included in the original PB
equation to obtain the correlation-enhanced PB equation as
[21]:

( ) ( )f p r r- = +f f
+ +

- -
- -

- -+ + + - - -l z z4 e e , 44z z u z z u2
B 0 0

where ( )r r=   ¥z uexps0 with ¥u being the self-energy at
infinity is the rescaled bulk number density to ensure that
local density approaches the bulk value when r goes to in-
finity. As a MPB equation is obtained, the potential fPB in
equation (42) should be replaced by the solution of
equation (44) to obtain the self-consistent equations.

Equations (42)–(44) are similar to the self-consistent
equations in the FT approach. It can be shown that the
formula of our correlation-enhanced PB model is reduced to
the FT approach if one applies a linear approximation to the
equation for ( )¢G r r, [21]. However, such a linearization is in
fact mathematically problematic since ( )¢G r r, diverges as ¢r
goes to r, and the linearization is acceptable only when

( )¢G r r, is close to zero, indicating that the widely used
Gaussian reference action is ad hoc and may not be a good
choice for charged particles systems. The RDFs obtained by
the MD simulations for 1:1 and 1:2 ionic solutions show that
our correlation-enhanced PB model matches the MD results
very well but the corresponding FT equation deviate sig-
nificantly from the MD results [21].

4.2. Outhwaite–Bhuiyan MPB theories

Outhwaite and Bhuiyan developed a series of MPB theories
known as MPB1 to MPB5 yielding different levels of acc-
uracy [55, 56] with MPB5 the most accurate one. The MPB
theories can be considered as a generalization of the integral
equation method (see appendix) to the heterogeneous case.
The equation describing the model composed of a charged
hard-sphere particle next to a planar hard electrode with a
uniform surface charge density s is [58]

( ) ( )åy
e e

r= -
x

q g x
d

d

1
, 45

s
s s s

2

2
0

where ( )g xs is the singlet wall-ion distribution function which
can be obtained using the Kirkwood charging process
[59, 60] by

( ) ( ) ( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥òx b y b j j= - - -


g x x q x qexp lim d ,

46

s s s

e

r
s sb s

0 0

s
* *

where ( ) ( ∣ )x = =x g x q 0s s s is the exclusive volume term, j*
is the fluctuation potential, the subscript b denotes the
corresponding value for bulk, and the subscript s denotes the
ion species. After complicated calculation of the fluctuation
potential, the expression finally appears to be

( ) ( ) ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥x b y

b
pe e

= - - -g x x q L
q

F Fexp
8

, 47s s s

2

0
0
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where the operator ( )yL is given by

( ) { ( ) ( )}

( ) ( ) ( )ò

y y y

y

= + + -

-
-

-

+

L
F

x a x a

F F

a
X X

2

2
d , 48

x a

x a
0

and the coefficients F and F0 are expressed in terms of the
distance x and ion diameter a. Details of the derivation can be
found in [56]. The expression for the exclusive volume term
can be obtained by applying the Born–Green–Yvon hierarchy
[61], or by using an alternative and simpler expression
developed by Outhwaite and Lamperski [62]:

( ) ( ) { ( ) ( ∣ )}

( )

⎡
⎣⎢

⎤
⎦⎥òåx x r s= - =x x c g x g x Vexp 0 d ,

49

s s
t

t st t t
0 0

where cst
0 is the inhomogeneous neutral-sphere direct corre-

lation function (DCF) whose meaning can be found in the
appendix and ( ) ( ∣ )x x s= =x x 0 .s s

0 The cst
0 and ( )x xs

0 can be
approximated by the PY results [63, 64] and the subscript t
runs over all the ion species.

The MPB equations are solved for a primitive model of a
planar double layer containing 1:1 or 1:2 charged hard-sphere
particles. The results are compared with corresponding Monte
Carlo (MC) simulation results and both the MPB formulations
reproduce the MC data very well [58].

5. Mean field theories

The MPB equations described above are usually hard or
impossible to be solved analytically, which limits their practical
applications in some scenarios. A simple analytic expression
for the ion or potential distribution is important and convenient
in many applications. In this section, we introduce two mean-
field theories, the DIT [37, 38, 65] and the MDH theory
[39, 40]. The former provides an effective-charge Yukawa
potential and the latter ends up with a multi-Yukawa potential.

5.1. The DIT

To derive the DIT, we start with the Ornstein–Zernike (OZ)
equation for the pair correlation functions:

( ) ( ) (∣ ∣) ( ) ( )òå= + ¢ - ¢ ¢h r c r r c r r n h rd , 50ij ij
l

il l lj

where ( )h r is the total correlation function (TCF) and ( )c r is
the DCF, see the appendix for their descriptions. It is con-
venient to apply the Fourier transform to obtain

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )å= +h k c k c k n h k 51ij ij
l

il l lj

and convert it to the matrix form

ˆ ˆ ˆ ˆ ( )= +H C C HN , 52

where ˆ { ˆ } ˆ {ˆ } { }d= = =H C Nh c n, , .ij ij ij i The total charge

distribution is

( ) ( ) ( ) ( )( ) år d= +r q r q n h r 53j j
l

l l lj
tot 3

and the average potential is

( ) (∣ ∣) ( ) ( )òy j r= ¢ - ¢ ¢r r r r rd , 54j j
tot

where ( ) ( )j pee=r r1 4 0 is the Coulomb potential. In the
Fourier space the average potential is

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )
⎡
⎣⎢

⎤
⎦⎥åy j r j= = +k k k k q q n h k 55j j j

l
l l lj

tot

and in the matrix form

( ˆ ) ˆ [ ˆ ] ( )y j= +q q HN , 56T T T

where ˆ { ˆ } { }y y= =q q,j j are vectors.
The key idea of the DIT is to split the pair correlation

function into a short-range part and a long-range part, then the
DCF is

( ) ( ) ( ) ( )= +c r c r c r , 57ij ij ij
l0

where superscript 0 denotes the short-range part and super-
script l denotes the long-range part. Analogous to the long-
range behavior of the RDF, the long-range part of DCF

( ) ( )b j~ -c r q q rij
l

i j when  ¥r . Therefore, we have

( ) ( ) ( ) ( )b j= +C r C r q q r 58ij ij i j
0

and the Fourier transform in the matrix form is

ˆ ˆ ˆ ( )b j= +C C qq . 59
0 T

Inserting the short-range part of DCF into the OZ
equation and utilizing equation (56), we have

ˆ ˆ ˆ ˆ ( ˆ ) ( )yb= + -H C C H qN . 60
0 0 T

The solution of the TCF is

ˆ ( ˆ ) ˆ ( ˆ ) ( ˆ ) ( )yb= - - -- -H C N C C N q1 1 . 61
0 1 0 0 1 T

Defining the short-range variables ˆ ( ˆ ) ˆ= - -H C N C10 0 1 0

and ˆ ( ˆ )r = - -C N q1 ,0 0 1 we have

ˆ ˆ ˆ ( ˆ ) ( )r yb= -H H . 620 0 T

In the real space, the TCF is

( ) ( ) (∣ ∣) ( ) ( )òb r y= - ¢ - ¢ ¢h r h r r r r rd . 63ij ij i j
0 0

The form of equation (63) is the same as that of the DH
theory, but their definitions of the charge densities are dif-
ferent. In the DH theory, the corresponding expression for the
TCF is

( ) ( ) ( ) ( )( )òb d y= - ¢ ¢h r r q r rd , 64ij i j
DH 3 DH

where ( )( )d r3 is the three-dimensional Dirac delta function.
For DIT, to derive an expression for the average potential, we
first express r0 in terms of h :ij

ˆ ˆ ( )r = +q H Nq. 650 0
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In the real space

( ) ( ) ( ) ( )( ) år d= +r q r q n h r . 66j j
l

l l lj
0 3 0

Combining equations (53), (63), and (66), we obtain the
total density

( ) ( ) ( )

( ) (∣ ∣) ( )

( ) (∣ ∣) ( ) ( )

( )

ò

ò

å

å

r d

r b r y

r a y

= +

= - ¢ - ¢ ¢

= - ¢ - ¢ ¢

r q r q n h r

r r q n r r r

r r r r r

d

d , 67

j j
l

l l lj

j
l

l l l j

j j

tot 3

0 0

0

where (∣ ∣) (∣ ∣)åa r- ¢ º - ¢r r q n r r
l l l l

0 is a response func-

tion comparable to the Debye parameter åk b= n q .
l l lDH

2 2

The average potential satisfies Poisson’s equation:

( ) ( ) ( ) (∣ ∣) ( )

( )
òe e y r r a y-  = = - ¢ - ¢ ¢r r r r r r rd ,

68

j j j j0
2 tot 0

which reduces to the DH equation if we replace ( )r rj
0 with the

ion density and (∣ ∣)a - ¢r r with k .DH
2 We see that all infor-

mation we need to obtain the solution is the expression of
(∣ ∣)a - ¢r r . Applying the linear response theory [66], it can

be shown that ( )a r is related to the dielectric function ˆ ( )e kl in
the Fourier space by

ˆ ( ) ˆ ( ) ( )e e
a
e

= +k
k

k
, 69

0
2

where ˆ ( )a k is the Fourier transform of ( )a r . Therefore, all the
information of the key parameters in DIT is contained in the
response functions. Practically, the linear response function

( )a r can be obtained by experiment and/or MD simulation.
In the theoretical work by Varela et al [67], ( )a r is also
obtained by calculating the static structure factor for a one-
component charged-sphere model in the modified mean-
spherical approximation (MSA) and the random phase
approximation (RPA). The authors have shown that the RPA
clearly accounts for the basic feature of the DIT that the
distribution functions split into two well-defined parts and can
be considered as a first-order approximation to the pro-
blem [12].

5.2. The MDH theory

The MDH theory, which is closely related to the DIT, still
needs the information of the dielectric function to determine
its key factors. An advantage of the MDH theory is that the
coefficients are not too sensitive to the size and charge of the
solute molecules [39], which allows the usage of the solvent
to estimate the coefficients for the solute. The Gaussian unit is
adopted and the ˆ on top of the variables in the Fourier space
is omitted in the following equations, as is in the original
paper.

To derive the MDH theory, we start with the Poisson’s
equation in the Fourier space ([40]) of the DIT:

( ) ( ) ( ) ( )e y pr=k k k k4 , 70j j
2 0

in which ( ) ( )e e= + pak k

k

4
2 is the dielectric function of the

solution with the relative dielectric constant e and ( )a k is just
ˆ ( )a k in equation (69). The charge density ( )r kj

0 has the same
definition as in equation (66), but it can be interpreted as the
free charge density in most cases as long as the linear
response theory is applicable [40].

The roots of ( )e k are useful for finding the solution and
are denoted as ki ,n therefore

( )
( )

( )
( )

e
e

=
+

k k
k k

f k
, 71n n2

2 2

where ( )f k is a function with no poles. We can then solve the
potential in the real space using the inverse Fourier transform

( ) [ ( ) ] ( )

( ) ( )

( )
( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ò

ò 

y
p

y

p

r

e

=

=
+

¥

¥

r
r

k k k kr

r
k

kf k k

k k
kr

1

2
d sin

1

2
d sin . 72

j j

j

n n

2 0

2 0

0

2 2

Solving the integral using the residue theorem, we have
the following asymptotic solution:

( ) ( )åy
e

~
-

r
q

r

e
, 73j

n

jn

n

k r
eff,

eff,

n

where ( )r=q kijn j neff,
0 is an effective charge and

( )⎡⎣ ⎤⎦e = e

=
k

1

2
n

k

k k k
eff,

d

d i n

is an effective dielectric constant. The

solution is a linear combination of multiple Yukawa poten-
tials with different Debye lengths k .n The DH theory can be
obtained by applying ( ) ( )e e= +k k k1 DH

2 2 to the MDH
theory so that it has only one root ki DH and hence results in a
Yukawa potential.

Since the solution of the MDH equation is a combination
of the solutions of DH equations with various Debye lengths,
it can be determined by finding an effective linearly-com-
bined coefficient set instead of using the effective parameters
directly. Given the dielectric function is known, this kind of
coefficient set can be determined by the Stillinger–Lovett
relation [68–70]. In practice, the dielectric function can be
calculated by the MSA or the HNC approximation.

6. Conclusions

In this paper, we review the original PB theory and some
recent progresses of improving it. The original PB theory is
the first successful theoretical model for describing charged
systems including ionic solutions, but the neglect of ion
correlations and exclusive volume effects disables its
applicability to the cases of high charge densities or valences.

The FT approach, aided by the definition of self-energy,
provides a way to directly solve the grand partition function
by performing the HS transformation, and various approx-
imation methods lead to different versions of the FT
approach. The variational method with a Gaussian reference
action was used by several groups to solve the functional
form of the partition function. However, the validity of the
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Gaussian functional is questionable, and we found its num-
erical solution deviates significantly from MD simulation
results.

A correlation-enhanced PB model was developed by us
based on physical pictures, which also defines a self-energy
but whose expression is different from the FT approach. We
have shown that our model reduces to the variational method
of the FT approach when applying a linear approximation,
which is nevertheless mathematically problematic. A more
sophisticated MPB theory was developed by Outhwaite and
Bhuiyan, which still keeps the form of the original PB
equation, but the pair correlation functions are calculated
analytically with the integral equation theory.

The mean field theories try to find a solution as simple as
the Yukawa potential. The DIT gives an exact expression,
which has the form of the DH theory with the variables to be
determined by splitting the pair correlation function into a
short-range part and a long-range part. The MDH theory
suggests a multi-Yukawa potential which is also exact as long
as the coefficients are precisely determined. However, both
the DIT and MDH theories require the information of di-
electric function, which needs to be further determined either
by theoretical approximations or experimental data.
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Appendix. Integral equation theory

The DCF ( )c r and TCF ( )h r are related by the OZ equation:

( ) ( ) (∣ ∣) ( ) ( )òå= + ¢ - ¢ ¢h r c r r c r r n h rd . A1ij ij
l

il l lj

The OZ equation can be understood as follows: the
particles i and j can be related directly by ( )c r ,ij or indirectly
through another particle l. The total correlation function is
defined as

( ) ( ) ( )= -h r g r 1, A2

where ( )g r is the RDF. Once we obtain the total correlation
function or equivalently the RDF, the properties of the system
can be calculated with the knowledge of statistical physics.
However, the DCF is hard to determine, not to mention that
its physical meaning is not well defined. To solve the OZ
equation, several approximate methods, known as the integral
equation theories [24], are proposed.

An intuitive method is the MSA, which is defined in
terms of the DCF by:

( )
( ) ( ) ( )b

= <
= - >

g r r d
c r v r r d

0,
, A3

where d is the hard sphere diameter and ( )v r is the interaction
potential between particles. In the MSA, the OZ equation can
be solved analytically and can be shown to reduce to the DH
theory at a high temperature or a low density limit.

Other classic approximations are the PY and HNC
equations:

( ) [ ( )][ ( ) ( )] ( )
( ) [ ( )] [ ( ) ( )] ( ) ( )

b
b

= - + -
= - -

g r v r h r c r
g r v r h r c r

exp 1 PY ,
exp exp HNC . A4

The PY or HNC equation can be solved numerically
together with the OZ equation. The HNC approximation can
reproduce simulation results for charged particles systems
very accurately, while the PY approximation is proved to be
more successful for short-range potentials.
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