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Dynamic heterogeneity in aqueous ionic
solutions†

Gan Ren, a Lin Chenb and Yanting Wang *cd

It is well known that supercooled liquids have heterogeneous dynamics, but it is still unclear whether

dynamic heterogeneity also exists in aqueous ionic solutions at room or even higher temperatures. In this

work, taking KSCN aqueous solutions as an example, we identify by molecular dynamics simulation that

dynamics of ionic solutions at a finite concentration are heterogeneous at room and even higher

temperatures. Our results indicate that thermal movements of K+ and SCN� deviate from the Gaussian

distribution in time and space, as demonstrated by a non-Gaussian parameter and the self-van Hove

function. The dynamic susceptibility is nonzero at intermediate times for both K+ and SCN�. The self-

intermediate scattering function of ions decays in a stretched exponential way with an exponent smaller

than one. The dynamics of the solution are more homogeneous at a higher temperature. Since transient

ion clusters of different sizes decay with different lifetimes and exponents, we propose that the dynamic

heterogeneity is introduced by transient cluster formation and dissociation in ionic solutions, which leads

to a mixed relaxation scenario. Variants of the Stokes–Einstein relation are found to break down into a

fractional form analogous to supercooled liquids, but the original Stokes–Einstein relation is indeed valid if

taking into account the temperature dependence of the effective hydrodynamic radius. Overall, despite

some quantitative differences, the dynamic heterogeneity in aqueous ionic solutions at room or higher

temperatures is qualitatively analogous to that in supercooled liquids at a much lower temperature.

1 Introduction

Aqueous ionic solutions have wide application in many areas
including chemical engineering and biological science.1–6

A thorough understanding of their structural and dynamic
properties is essential for their applications. Debye and Hückel7

proposed a homogeneous scenario, which only considers the
two-point spatial correlation and is only applicable to extremely
dilute aqueous ionic solutions whose concentration is less than
0.01 M. However, as the concentration increases, more ions
interact with each other and one has to take higher order
correlations into account.7 A direct result of the correlation
is multi-sized transient cluster formation and dissociation in
aqueous ionic solutions, as already observed in some experi-
ments and computer simulations. Georgalis et al.8 observed
experimentally cluster formation in NaCl and (NH4)2SO4 solu-
tions using dynamic light scattering. Cluster formation and

its evolution in concentrated aqueous solutions of alkali thio-
cyanate salt have been experimentally observed by using 2D
vibrational energy transfer.9 Cluster formation in NaCl solution
has been observed at ambient or supercritical conditions by
different experimental groups.10–13 Hassan14,15 found the for-
mation of variously sized clusters in NaCl solutions by molecular
dynamics (MD) simulation and explored the structural and
dynamic properties of ion clusters. Liquid-like polymer chains
were identified by Wallace et al. in CaCO3 solutions which act as
the nuclei for crystallization.16 Choi et al.17–22 have adopted
graph theory, MD simulations, density functional theory and
experimental methods to systematically study cluster formation
in different aqueous ionic solutions including NaCl, KSCN,
KClO4, etc. Our previous MD simulations23 have demonstrated
that, below the crystallization concentration, the spatial dis-
tribution of ions is homogeneous from the ensemble-averaged
viewpoint but is instantly inhomogeneous. Since ions are
distributed inhomogeneously in aqueous ionic solutions at a
finite concentration due to transient cluster formation, it is
interesting to see whether the dynamics of aqueous ionic
solutions at room temperature are also heterogeneous, analogous
to supercooled liquids?

Dynamic heterogeneity is a key feature of supercooled liquids,
in which various relaxation processes simultaneously exist.
The time correlation function usually decays in a stretched
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exponential manner at a long-time scale rather than the
standard exponential decay in simple liquids.24–27 Dynamic
heterogeneity in glass-forming liquids has been systematically
studied experimentally28,29 and theoretically.30–34 Keys et al.28

detected the spatially heterogeneous dynamics in a system of
air-driven granular beads by varying the density and effective
temperature. They observed that the dynamics become much
slower and more spatially heterogeneous when approaching
the jamming transition point. Weeks et al.29 have used confocal
microscopy to directly observe the three-dimensional dynamics
of colloidal supercooled glass and supercooled fluids. They
found that mobile particles form clusters and show collective
dynamics, and the average cluster size increases sharply near
the glass transition point. Giovambattista et al.30,35 studied the
heterogeneous dynamics of supercooled water by performing
molecular dynamics simulation with the SPC/E water model.
They found that mobile water molecules form clusters, whose
behaviour depends on the temperature. Moreover, ionic liquids
perform as supercooled liquids even at room and higher
temperatures with mobile ions strongly correlated32 and cationic
alkyl side chains diffusing collectively,36 which should be corre-
lated with their microscopic structural heterogeneity35,37–40 and
critical fluctuations.41 Similar phenomena are also observed in
supercooled Lennard-Jones liquids where mobile particles tend
to form string-like clusters and diffuse together.33,34

Dynamic heterogeneity in aqueous ionic solutions at low
temperatures in supercooled states was revealed in some
dielectric and conductivity relaxation experiments, which how-
ever were more focused on water instead of aqueous ionic
solutions. Experimental studies discovered that the response
of aqueous ionic solutions presents more than one relaxation
within a wide temperature range in a supercooled state, and the
susceptibility can be fitted by the Cole–Cole equation42–46

rather than the Debye exponential relaxation. As a good glass
former, the fragility, decoupling, and glass transition of aqueous
ionic solutions can be easily adjusted at low temperatures,47

whose temperature dependence of the relaxation time obeys a
super-Arrhenius law instead of the standard Arrhenius law.48

A larger decoupling was observed in Ca(NO3)2 solutions com-
pared to LiCl solutions.48–50 Besides, aqueous ionic solutions can
be more deeply supercooled than pure water, which facilitates
their usage as a route to reach no man’s land.51,52 It was
also shown that heat capacity and density anomalies are still
present in dilute NaCl aqueous solutions but disappear at high
concentrations.53 Suzuki and Mishima54 observed two distinct
glassy states in diluted NaCl solutions. Polyamorphic phase
separation caused by decompression was observed in LiCl
aqueous solutions.55,56 The glass-forming ability of LiCl solu-
tions was studied by Kobayashi and Tanaka,57,58 who found
that the glass-forming ability is maximized near the eutectic
point. Corradini et al.59 found a liquid–liquid critical point in
NaCl aqueous solutions at a higher temperature and lower
pressure compared to pure water.

Since all the above studies for aqueous ionic solutions were
conducted at low temperatures, it is still unclear whether
aqueous ionic solutions at a finite concentration at room or

even higher temperatures have heterogeneous dynamics. Some
studies seem to hint at the existence of dynamic heterogeneity
in ionic solutions at room temperature. Hassan14 found
variously sized clusters with different lifetimes in NaCl aqueous
solutions. Zhang et al.60 observed the deviation of dynamics
from the Stokes–Einstein–Debye relation in KSCN aqueous
solutions. Xiao and Song61,62 have shown the electric potential
around an ion has a multi-Yukawa form, and multi-Debye
lengths exist in aqueous ionic solutions. However, so far no
explicit and systematic studies focusing on this topic have been
conducted. In this work, we carry out MD simulations for KSCN
aqueous solutions as an example to explicitly identify the
existence of dynamic heterogeneity in ionic solutions at a finite
concentration at room and higher temperatures far above
their glass transition temperature. To characterize the dynamic
heterogeneity, we calculated the non-Gaussian parameters and
self-van Hove functions for ions, both of which turned out to
deviate from Gaussian in time and space. The ionic dynamic
susceptibility is nonzero at intermediate times. The self-
intermediate scattering functions for ions decay by following
a stretched exponential function with an exponent b smaller
than one, rather than the regular exponential decay in simple
liquids. As ions tend to form transient clusters, we found
that differently sized clusters relax by following stretched
exponential functions with different times and exponents.
The dynamics of ionic solutions are more homogeneous at a
higher temperature. In addition, we propose that the relaxation
of ionic solutions follows a mixed scenario instead of the pure
homogeneous or inhomogeneous scenario. Variants of the
Stokes–Einstein relation break down due to dynamic hetero-
geneity and a fractional form is followed, but the original
Stokes–Einstein relation is actually fulfilled after taking into
account the temperature dependence of the effective hydro-
dynamic radius.

2 Simulation details and
analysis methods
2.1 Simulation details

Because of the high solubility of KSCN in water (24.49 mol kg�1

at T = 298.15 K),63 KSCN aqueous solutions are a good choice to
serve as a representative system for studying dynamic hetero-
geneity in ionic solutions since good statistics can be obtained
with a moderate concentration corresponding to a not-too-large
MD setup. The potassium ion parameters were adopted from
the Dang model,64,65 SCN� parameters were taken from the
model developed by Vincze et al.,66 and water molecules were
simulated by the SPC/E model.41 All ions and atoms were
treated as charged Lennard-Jones particles whose interactions
are described as

uðrijÞ ¼ 4eij
sij
rij

� �12

� sij
rij

� �6
" #

þ qiqj

rij
(1)

where rij is the distance between the ith atom (ion) and the jth
atom (ion), s and e are the Lennard-Jones distance and energy
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parameters, respectively, and qi is the partial charge of the ith
atom (ion). The corresponding force field parameters are listed
in Table 1.

All our MD simulations were carried out with the GROMACS
package,67,68 and the system temperature was kept constant by
the Nosé–Hoover thermostat.69,70 Periodic boundary conditions
were applied to all three dimensions and the particle mesh
Ewald algorithm71 was employed to calculate the long-range
electrostatic interactions with a cutoff of 1.2 nm in real space.
The van der Waals interactions were calculated directly with the
same cutoff of 1.2 nm. The SCN� and water molecules were
kept rigid by constraining the bond lengths and angles at their
equilibrium values by utilizing the SHAKE algorithm.72 The
Lorentz–Berthelot rule73 was used to combine the Lennard-
Jones potential parameters. We performed MD simulations for
a KSCN aqueous solution with 300 ion pairs and 1024 water
molecules corresponding to a concentration of 16.67 mol kg�1,
so that the system does not crystallize in the temperature range
from 300 K to 800 K. To make sure that this concentration setup
is reasonable for the given force field parameters, we have
calculated the radial distribution functions (RDFs) of ions
at various temperatures, which are plotted in Fig. 1. We can
see from those RDFs that no crystallization happens at any
simulated temperatures.

The system density was determined by a 5 ns NPT MD
simulation at T = 300 K and P = 1 atm after a short-time
equilibration from a manually constructed initial configuration.
After that, the system went through an annealing procedure in
the NVT ensemble from T = 2000 K down to 1500, 1000, 800, 700,
600, 500, 450, 400, 350, and 300 K for 1 ns at each temperature.
A series of 30 ns NVT simulations were then carried out to
equilibrate the system at eight temperatures of T = 300, 350,
400, 450, 500, 600, 700, and 800 K, whose initial configurations

were taken from the annealing process at the given temperatures. To
avoid possible disturbance of the thermostat, NVE simulations
further followed at various temperatures. At each temperature, the
system was equilibrated in the NVE ensemble for 10 ns, followed by
a 500 ps NVE MD simulation to sample data. The time step for all
MD simulations was 1 fs and the configurations were sampled every
10 steps for data analysis. Considering the fast system relaxation
within 100 ps, the sampling simulation time of 500 ps and the
sampling interval of 10 steps are appropriate. The simulation results
obtained from the NVE simulations were compared with those from
the NVT simulations and similar results were yielded.

2.2 Non-Gaussian parameter

If a system has dynamic heterogeneity, the thermal movements of
particles deviate from the Gaussian distribution at intermediate time
intervals, just as observed in supercooled liquids.74 A non-Gaussian
parameter was adopted to characterize the deviation of the system
dynamics from the Gaussian behaviour, which is defined as

a2ðtÞ ¼
3 r!4ðtÞ
� �

5 r!2ðtÞ
� �

2
� 1 (2)

where -
r(t) is the ion position at time t, and the acute brackets

represent the ensemble average. a2(t) is zero if particle move-
ments obey the Gaussian distribution, and non-zero otherwise.
a2(t) reaches its maximum at an intermediate time t* in a
dynamically heterogeneous system.

2.3 Self-van Hove function

The self-van Hove function was also adopted to further
characterize the deviation of the system dynamics from the
Gaussian behaviour as a function of both distance and time,
which describes the distribution of a particle from its initial
position and is defined by

Gsðr;tÞ ¼
1

N

XN
i¼1

d ri
!ðtÞ � ri

!ð0Þ
�� ��� r
� �� �

(3)

The first-order approximation of Gs(r, t) takes the Gaussian
form as

G0ðr; tÞ ¼
3

2p r!2ðtÞ
� �

" #3=2
exp �3r2

	
2 r!2ðtÞ
� �
 �

(4)

Table 1 Force field parameters for K+, SCN� and water molecules

Atom/ion s (nm) e (kJ mol�1) Charge (e)

K+ 0.333 0.420 +1.0
S 0.352 1.5225 �0.56
C 0.335 0.425 +0.14
N 0.331 0.310 +0.58
O 0.3166 0.650 �0.8476
H — — +0.4328

Fig. 1 Radial distribution functions of ions at various temperatures: (a) K+–K+, (b) SCN�–SCN�, and (c) K+–SCN�.
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where h-r2(t)i is the mean square displacement of ions. Gs(r,t)
deviates from G0(r,t) if the system dynamics is heterogeneous.
We calculate the relative deviation [Gs(r,t*) � G0(r,t*)]/G0(r,t*) at
time t = t*, the most heterogeneous moment of a2(t), to
characterize the deviation from Gaussian in space.

2.4 Dynamical susceptibility

The dynamic susceptibility is usually applied to describe
dynamic heterogeneity in supercooled liquids.75 The maximum
of the dynamic susceptibility characterizes the correlated volume
and its appearance time corresponds to the correlation time.
The dynamic susceptibility is defined as the fluctuation of the
overlap function,76 namely

w4ðtÞ ¼
1

N
Q2ðtÞ
� �

� QðtÞh i2

 �

(5)

where Q(t) is the overlap function and is defined as76,77

QðtÞ ¼
XN
i¼1

d ri
!ðt0Þ � ri

!ðt0 þ tÞ
�� ��� �

(6)

where d(r) = 1 if r r rcut and zero otherwise. The cutoff should
be chosen in such a way that it is long enough to capture the
correlation of particles while short enough to keep particles
away from the influence of their images. In our case, the
cutoff was chosen as the main peak position of the RDF
between K+ and SCN�, which is rcut = 0.3 nm. w4(t) is zero
if the distribution of Q(t) follows Gaussian behaviour, and
nonzero otherwise.

2.5 Self-intermediate scattering function

To further identify the dynamic heterogeneity, we consider the
structural relaxation of ions in aqueous ionic solutions. The
relaxation of ions characterized by the self-intermediate scattering
function is

Fs k; tð Þ ¼ 1

N

XN
j

exp i k
!� rj

!ð0Þ � rj
!ðtÞ


 �n oD E
(7)

where N is the number of ions, and k = |
-

k| is usually chosen as
the position of the main peak of the static structure factor. In
this wok, k values are 15.00 nm�1 for K+ and 14.02 nm�1 for
SCN�, respectively. Detailed static structure factors are plotted
in the ESI† (Fig. S1). Ions have a large fluctuation at T = 300 K,
as shown by S(0), and the fluctuation decreases significantly
with increasing temperature. One charge order is formed
at k B 15 nm�1 for both K+ and SCN�, and another is formed
at k B 15 nm�1 and k B 20 nm�1 for K+ and SCN�,
respectively.64,78 Fs(k,t) relaxes by following an exponential
decay as Fs(k,t) B e�t/t in simple liquids, and a stretching
exponential function Fs(k,t) B e�(t/t)b in the a relaxation region
in glass-forming liquids, where t is the relaxation time and b
is the exponent. b is usually smaller than 1 and its deviation
from 1 also quantifies the degree of dynamic heterogeneity
of the system.

2.6 Stokes–Einstein relation

The breakdown of the Stokes–Einstein relation is proposed to be
a direct consequence of dynamic heterogeneity.79 The Stokes–
Einstein relation is expressed as

D ¼ kBT

CZa
(8)

where T is the temperature, kB is the Boltzmann constant, Z is
the viscosity, a is the effective hydrodynamic radius of an ion,
and C is a constant determined by boundary conditions. The
ion diffusion constant is determined by its asymptotic relation
with the mean square displacement

D ¼ lim
t!1

ri
!ðtÞ � ri

!ð0Þ
�� ��2D E

6t
(9)

Since Z is difficult to accurately determine via simulation,
t is usually adopted as a substitute of Z.80 The two relations,
D B t�1 81–83 and D B T/t,84,85 are usually adopted as variants
of the Stokes–Einstein relation. D B t�1 is an exact result in
simple liquids if the ion displacement d rj!ðtÞ ¼ rj

!ðtÞ � rj
!ð0Þ

follows Gaussian behaviour. The same functional form is also
proposed in the mode coupling theory if the temperature is
close to the glass transition point.79 D B T/t comes from the
approximated relation Z = GNt,85 where GN is the instanta-
neous shear modulus and presumed to be a constant.

Shi et al.80 simulated three mixed Lennard-Jones-like liquids
and coarse-grained ortho-terphenyl across a broad range of
temperatures and densities, aiming to investigate the ration-
ality of D B t�1 and D B T/t by comparing with the results
given by D B T/Z. They found that the two variants behave
differently from D B T/Z during cooling. While the effective
hydrodynamic radius a is often treated as a constant in
D B t�1, D B T/t and D B T/Z when testing the Stokes–
Einstein relation, in ionic solutions, a may vary with thermo-
dynamic conditions due to the solvation effect and dielectric
polarization.65,86 Therefore, in the following, the Stokes–
Einstein relation is evaluated by D B T/Z and D B T/Za,
respectively, to study the influence of a.

2.7 Shear viscosity

Due to its reliability and fast convergence, the method
proposed by Hess87 has been adopted to calculate the shear
viscosity. It is a non-equilibrium method with a periodic
external force ax(z) = A cos(qz) applied in the X direction, where
A is the maximum of ax and q = 2p/l with l being the simulation
box size. The Navier–Stokes equation for liquids with ax

applied is

r
@ux zð Þ
@t

¼ rax zð Þ þ Z
@2ux zð Þ
@z2

(10)

where the velocity ux(z) in the X direction is a function of z only
and r is the density of the fluid. The consequent velocity for the
steady state is

ux(z) = V(1 � e�t/t) cos(qz) (11)
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where V = Ar/Zq2 can be determined from ux(z). The shear
viscosity is

Z ¼ Ar
Vq2

(12)

Because r and q are the same for all simulations, we evaluate
the shear viscosity by A/V. The value of A needs to be chosen
carefully to accurately determine the shear viscosity:87 if A is too
large, the system is too far from the equilibrium; if it is too
small, the fluctuation is too large to accurately determine the
viscosity. To obtain the correct shear viscosity, we determined the
linear dependence regime between V and A and the temperature
drift was kept smaller than 1 K. Fig. 2 shows that V is proportional
to A when A is within 0.01–0.1 nm ps�2.

2.8 Frictional coefficient

Because ions are charged in aqueous ionic solutions, we can
calculate their frictional coefficient by applying an external
static electric field E.88,89 After reaching the non-equilibrium
steady state, the frictional force on an ion ( fr = av) is equal to
the electric force (Fe = qE), namely qE = av, where q is the electric
charge of the ion, and v is the drift velocity dragged by E. The
frictional coefficient is

a ¼ qE

v
(13)

where v can be calculated by v ¼ lim
t!1

rðtÞh i=t.89 The frictional

coefficient can be evaluated by a B E/v when q is a constant.
The hydrodynamic radius of the ion is evaluated by a B E/Zv. To
prevent the system from moving too far from the equilibrium
state, we determined the linear response region for K+ and SCN�,
as shown in Fig. 3, in which v is proportional to E when E is
within 0.01–0.1 V nm�1 for all temperatures.

3 Results and discussion

To identify the existence of dynamic heterogeneity in aqueous
ionic solutions at room or even higher temperatures, we first
characterize the thermal movements of ions in time and space

by the non-Gaussian parameter and the self-van Hove function,
respectively, followed by calculating the dynamic susceptibility
of ions, and then calculate the structural relaxation. The micro-
scopic mechanism of the dynamic heterogeneity was determined
by calculating relaxation times of differently sized clusters,
which manifests that dynamic heterogeneity in aqueous ionic
solutions is attributed to ion cluster formation and dissociation.
Finally, the Stokes–Einstein relation and its variants as well as
their connections with dynamic heterogeneity are discussed.

3.1 Deviation from the Gaussian behavior

To identify if the system dynamics is heterogeneous, we first
quantify the thermal movement of ions by calculating the non-
Gaussian parameter a2 and its change with time to see if it is
Gaussian or not. The calculated a2 for K+ and SCN� at tem-
peratures 300, 350, and 400 K are plotted in Fig. 4, which shows
similar changes as in glass-forming liquids:34,79 a2 is zero in the
short-time range, followed by a gradual increase to reach its
maximum value at t = t* in the intermediate time range, and
then slowly decreases from its maximal value to its long-time
limit of zero. The nonzero values of a2 imply the deviations
from Gaussian of ion displacements at intermediate times. The
deviation from the Gaussian behaviour in aqueous ionic solu-
tions is qualitatively the same as in supercooled liquids.34,90,91

Both the maximal values of a2 and t* decrease with increasing
temperature, demonstrating that the dynamics of the KSCN
solution becomes more homogeneous at a higher temperature.
The maximal values of a2 at different temperatures are smaller
than those observed in supercooled Lennard-Jones liquids,34

Fig. 2 The linear dependence regime between V and A at different
temperatures. The symbols are simulation data and the solid lines are
fitted by V B A.

Fig. 3 The linear response region for K+ and SCN� under E at different
temperatures. The symbols are simulation data and the solid lines are fitted
by v B E.
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indicating that dynamic heterogeneity in ionic solutions at
room and higher temperatures is relatively weak.

To further quantify the dynamic heterogeneity, we calculate
the self-van Hove functions Gs(r,t) for K+ and SCN� at time
t = t*, which are compared with their first-order approxima-
tions. All the relative deviations [Gs(r,t*) � G0(r,t*)]/G0(r,t*) at
time t = t* plotted in Fig. 5 show the same trend: the deviations
are around four at the initial point r = 0, and start to decrease
with distance; after decreasing to its first zero, the deviation
continues decreasing to be negative; after reaching the minimal
negative value, it starts increasing which becomes significant
beyond r*. Moreover, similar to a2, the deviation significantly
decreases with increasing temperature. Those results are
similar to those for supercooled Lennard-Jones liquids.34

The dynamic susceptibility w4(t)76 is adopted to further
characterize the dynamic heterogeneity. w4(t) of K+ and SCN�

at T = 300, 350 and 400 K are plotted in Fig. 6. Similar as in
supercooled liquids,76 each w4(t) is almost zero at short times,
reaches its maximum at intermediate times, and decreases
to zero at long times, suggesting that the distribution of Q(t)
deviates from Gaussian. The correlation volume decreases with
increasing temperature as well as the correlation time, and
the dynamic heterogeneity also decreases with increasing tem-
perature. The maximum of w4(t) is much smaller than that
observed in supercooled Lennard-Jones liquids,74,75 and
the dynamic heterogeneity is much smaller in aqueous ionic
solutions compared with supercooled liquids at a much
lower temperature. Overall, combining the results given by

Fig. 4 Non-Gaussian parameter a2 versus time t at temperatures 300,
350, and 400 K for K+ (a) and SCN� (b).

Fig. 5 [Gs(r,t*) � G0(r,t*)]/G0(r,t*) versus r at time t = t* and temperatures
T = 300, 350, and 400 K for K+ (a) and SCN� (b).

Fig. 6 Dynamic susceptibility w4(t) as a function of time t at temperatures
T = 300, 350, and 400 K for K+ (a) and SCN� (b).
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the non-Gaussian parameter, self-van Hove function and dynamic
susceptibility, it is verified that the dynamics of aqueous ionic
solutions are unambiguously heterogeneous at room and even
higher temperatures, which become more homogeneous at a
higher temperature. Nevertheless, the dynamic heterogeneity in
ionic solutions at room temperature is weaker than that in
supercooled liquids at a much lower temperature.

3.2 Structural relaxation

In systems with dynamic heterogeneity, the time correlation
function decays in a stretched exponential way at large times
rather than the standard exponential relaxation in simple
liquids.92 The calculated self-intermediate scattering functions
Fs(k,t) for K+ and SCN� are shown in Fig. 7. It is shown that
Fs(k,t) decays much faster than in glass-forming liquids,34,81,93

and a higher temperature leads to a faster decay. Besides, no
obvious plateaus indicating b relaxation, typical in glass-forming
and supercooled liquids at low temperatures, have been
observed in our simulations, which can be understood by the
fact that, in aqueous ionic solutions at room or even higher
temperatures, ions have more freedom to move without being
fully arrested in local cage structures.

To test if ions relax exponentially, Fs(k,t) have been fitted by
Fs(k,t) B e�(t/t)b and the fitted bs are plotted in Fig. 8. All bs are
smaller than 1, demonstrating that Fs(k,t) follows a stretched
exponential decay at long times rather than the standard
exponential decay. The b value increases and approaches 1 with
increasing temperature, indicating that the system dynamics are

more homogeneous at a higher temperature, consistent with the
results from the non-Gaussian parameter, self-van Hove function
and dynamic susceptibility.

3.3 Relaxation scenario

All the above results indicate that aqueous ionic solutions have
similar dynamic heterogeneity with supercooled liquids. In
this section, we investigate the relaxation scenario of ionic
solutions. Two extreme macroscopic scenarios30,79 have been
proposed to explain the non-exponential relaxation in glass-
forming liquids: in the homogeneous scenario, the time corre-
lation functions for different components decay by following
the same stretched exponential function; in the heterogeneous
scenario, different components decay by following the standard
exponential function but with different relaxation times, and
the superposition of all components results in a stretched
exponential function.

To study the relaxation scenario in ionic solutions, we
quantify the size distributions of ion clusters by adopting the
definition of a cluster proposed by Stillinger94 that a particle
belongs to a cluster if the distance between this particle and
one of the particles in this cluster is smaller than a certain
distance rcut. In this work, rcut is chosen as the position of the
main peak of gK–K(r) (0.45 nm) for K+ and gSCN–SCN(r) (0.5 nm)
for SCN�. The size distributions for clusters consisting of K+ or
SCN� are shown in the ESI,† (Fig. S2, Tables S1 and S2). Most
clusters are smaller than 7 and larger size clusters have smaller
probabilities to appear. The lifetimes of clusters14 with size 2–7
have also been calculated and are plotted in the ESI,† (Fig. S3).
The clusters consisting of K+ are less stable with increasing size
and temperature, while a complex change is shown for SCN�.

Since the majority of ions belong to clusters with sizes
between 1 and 7, the self-van Hove functions for clusters with
various sizes from 1 to 7 for K+ and SCN� have been calculated
and fitted by Fs(k,t) B e�(t/t)b to obtain t and b, as plotted in
Fig. 9, and the mean values and their fluctuation of different
clusters are plotted in Fig. 10. It can be seen that clusters with
different sizes decay with different lifetimes t and exponents b,
both of which fluctuate heavily at low temperatures. With
increasing temperature, the fluctuations are suppressed with
decreasing t and increasing b which approaches one. All clusters

Fig. 7 Self-intermediate scattering functions Fs(k,t) at different tempera-
tures for K+ (a) and SCN� (b).

Fig. 8 Exponents b for the self-intermediate scattering functions fitted by
Fs(k,t) B e�(t/t)b.
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relax faster with increasing temperature and correspondingly
the dynamics become more homogeneous. Those results
manifest that various relaxation processes simultaneously exist
in ionic solutions and differently sized clusters relax with
different t and b. The lifetimes t and exponents b of clusters
are not equal, as shown in Fig. 9, demonstrating that ionic
solutions follow a mixture of the pure homogeneous scenario
and the pure heterogeneous scenario.

It has been shown that cluster formation plays an important
role in the relaxation scenario in ionic solutions: ions are likely

to form more diverse and larger sized clusters in concentrated
solutions.15,23 To further examine the role of cluster formation
in ionic solutions, we also calculated the dynamic heterogeneity
in different concentrations at T = 300 K. The dynamic hetero-
geneity with decreasing concentration shows similar changes to
when the temperature increases. The dynamic susceptibility,
fitted b for K+ and SCN�, fitted t and b for clusters with size 1–7
and cluster distributions are listed in the ESI,† (Fig. S3–S6,
Tables S3 and S4). Ions form smaller clusters at a lower
concentration, and large clusters rarely appear. Moreover, the
ionic solution is dynamically more homogeneous at a lower
temperature. Differently sized clusters relax with different t and
b, and more diverse t and b are observed at a larger concen-
tration. The results also indicate that ionic solutions relax in a
mixed scenario, and cluster formation plays an important role
in the relaxation of ionic solutions.

3.4 Stokes–Einstein relation and its variants

The two variants of the Stokes–Einstein relation, D B t�1 81–83

and D B T/t,84,85 are usually adopted to evaluate the Stokes–
Einstein relation in supercooled liquids. The breakdown of the
Stokes–Einstein relation is proposed to be a direct consequence
of dynamic heterogeneity.79 Shi et al.80 have found that the
usually adopted two variants of the Stokes–Einstein relation,
D B t�1 and D B T/t, give different results from D B T/Z in
supercooled Lennard-Jones-like liquids and coarse-gained
ortho-terphenyl when the temperature decreases, so they have
concluded that Z B Tt and Z B t are not good in evaluation
of Z. On the other hand, a may not be a constant in ionic
solutions, so we take into account a to test the Stokes–Einstein
relation with D B t�1, D B T/t, D B T/Z and D B T/Za,
respectively, to identify whether the dynamic heterogeneity
indeed leads to the breakdown of the Stokes–Einstein relation
in aqueous ionic solutions.

The diffusion constants and structural relaxation times
at different temperatures are plotted in Fig. 11. D B t�1 and
D B T/t are evaluated by D B t�x1 and D B (T/t)x2, respectively.
Fig. 12(a) shows that the calculated D and t are well fitted by
D B t�x1 with x1 = 1.17 for K+ and 1.12 for SCN�, demonstrating
that D B t�1 breaks down and follows a fractional form.81 Due
to different temperature dependences of D and t, x1 o 1 in
ionic liquids81 but x1 4 1 in this work: the increase of D is
faster than the decrease of t in aqueous ionic solutions while
heating, but a reverse trend is observed in ionic liquids. As shown
in Fig. 12(b), the data can also be well fitted by D B (T/t)x2 with
x2 = 0.74 for K+ and 0.70 for SCN�, indicating that D B T/t is
also invalid, and x2 is smaller than 1 analogous to that observed
in supercooled water.84,85

Inside the linear dependence regime shown in Fig. 3, the
shear viscosity evaluated by ZB A/V is calculated and plotted in
Fig. 13(a), which decreases with increasing temperature. All
the data shown in Fig. 13(b) align along the line described by
D B (T/Z)x3 with x

3
= 1.13 for K+ and 1.04 for SCN�.

The deviation of x3 from 1 indicates that the Stokes–Einstein
relation described by D B T/Z is also invalid. In the cases
of D B t�1 and D B T/t, the shear viscosity is evaluated

Fig. 9 t and b of the self-van Hove functions for differently sized clusters
fitted by Fs(k,t) B e�(t/t)b at different temperatures: (a) and (b) for K+; (c) and
(d) for SCN�.

Fig. 10 The mean values of t and b for different sized clusters. The error
bars demonstrate the fluctuations of tm and bm.
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by Z B Tt and Z B t, respectively. All xs are different in
D B t�x1, D B (T/t)x2 and D B (T/Z)x3 for both K+ and SCN�,

indicating that the forms of Z B Tt and Z B t are invalid. The
deviations of D B (T/Z)x3 from 1 are smaller than D B t�x1 and
D B (T/t)x2, demonstrating that D B T/Z is better than D B t�1

and D B T/t in verifying the Stokes–Einstein relation. x1

for D B t�x1 is close to x3 given by D B (T/Z)x3, suggesting that
Z B Tt may be a better substitute than Z B t for aqueous ionic
solutions, as similarly observed by Shi et al.80

To verify whether the original Stokes–Einstein relation
D B T/Za is really invalid or not, we should take into account
the temperature dependence of the effective hydrodynamic
radius and consider the frictional coefficient a B Za. The
frictional coefficient evaluated by a B E/v with data is shown
in Fig. 3. Fig. 14(a) shows that the frictional coefficients
decrease with increasing temperature; and Fig. 14(b) shows
that the simulation data can be well fitted by D B (T/a)x4 with x4

almost equal to 1 for both K+ and SCN�. The results suggest
that the Stokes–Einstein relation D B T/Za is actually valid in
ionic solutions at room and higher temperatures even with
dynamic heterogeneity.

Because of the dynamic heterogeneity, the displacement
of the ion deviated from Gaussian and further leads to the
breakdown of D B t�1. The variant D B T/t is based on the
approximated relation Z = GNt and GN is presumed to
be independent of temperature. However, the different x for
D B (T/t)x2 and D B (T/Z)x3 indicate that Z = GNt is invalid in
our simulations, and the temperature dependence of GN is also
observed in Lennard-Jones-like liquids and coarse-grained ortho-
terphenyl.80 Therefore, care should be taken when Z B Tt and

Fig. 11 The diffusion constant D (a) and the structural relaxation time t (b)
for K+ and SCN� at different temperatures.

Fig. 12 Testing the Stokes–Einstein relation with its two variants, D B t�1

and D B T/t. The symbols are the simulated results and the solid lines are
fitting by D B t�x1 and D B (T/t)x2, respectively. The fitted exponent x1 or x2

is in the same colour as the fitted solid line.

Fig. 13 (a) Shear viscosity evaluated by Z B A/V. (b) Testing the Stokes–
Einstein relation with D B T/Z. The symbols are the simulated results and
the solid lines are fitted by D B (T/Z)x3.
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Z B t are used to test the validity of the Stokes–Einstein
relation. The effective hydrodynamic radius has been evaluated
by a B a/Z, and the scaled effective hydrodynamic radius %a is
plotted in Fig. 15. %a is not a constant, but almost decreases with
increasing temperature for K+ and SCN�, indicating that the
effective hydrodynamic radius is not always a constant, espe-
cially when thermodynamic conditions change significantly. By
comparing the results given by D B t�1, D B T/t, and D B T/Z
with D B T/Za, it is shown that the Stokes–Einstein relation
D B T/Za is actually valid above room temperature, despite the
fact that the dynamic heterogeneity and the fractional form of
the variants are observed. The results suggest that D B t�1,
D B T/t and D B T/Z may not always be used as substitutes of

the Stokes–Einstein relation D B T/Za. Moreover, the dynamic
heterogeneity may not necessarily result in the breakdown of
the Stokes–Einstein relation.

4 Conclusions

In this work, KSCN aqueous solutions were simulated by MD
simulation as an example to probe the existence of dynamic
heterogeneity in aqueous ionic solutions at room and higher
temperatures. Our results indicate that dynamic heterogeneity
does exist in ionic solutions at room and higher temperatures,
analogous to supercooled liquids at much lower temperatures.
The thermal movements of K+ and SCN� deviate from the
Gaussian behaviour. The self-van Hove functions deviate from
their first approximation and the deviation increases signifi-
cantly at large distances. The dynamic susceptibility of ions is
nonzero at intermediate time which also suggests deviations
from Gaussian. The self-intermediate scattering functions of K+

and SCN� decay in a stretched exponential way. The solutions
become dynamically more homogeneous at a higher tempera-
ture. Both the fluctuations of t and b decrease with increasing
temperature. Differently sized clusters relax with different t and
b, indicating that ionic solutions relax by following a mixture of
the homogeneous and heterogeneous scenarios. In experiment,
the simplest way to detect dynamic heterogeneity in ionic
solutions is measuring the susceptibility of ionic solutions
under an external applied electric field:42–46 the dynamic
heterogeneity is present if the susceptibility is in a non-Debye
form. On the other hand, it is difficult and challenging to
confirm the dynamic heterogeneity by directly measuring
the relaxation or testing D B t�1. A promising method is
combining the work of Zhuang et al.9,60 and Xu et al.84 with
the former directly measuring cluster formation by energy
transfer and the latter directly detecting the relaxation.

The Stokes–Einstein relation is examined with the two
commonly adopted variants, D B t�1 and D B T/t. Our results
show that both take fractional forms with x a 1 for K+ and
SCN�. By comparing the results with D B T/Z, it is suggested
that D B t�1 and D B T/t are not good variants of the Stokes–
Einstein relation described by D B T/Z. The effective hydro-
dynamic radius is treated as a constant in D B t�1, D B T/t,
and D B T/Z, while we have found that the effective hydro-
dynamic radius is not a constant but decreases with increasing
temperature. After taking into account the effective hydro-
dynamic radius, it is shown that the Stokes–Einstein relation
described by D B T/Za is actually valid. Overall, the effective
hydrodynamic radius may vary with thermodynamic condi-
tions, so care should be taken when the three forms D B t�1,
D B T/t, and D B T/Z are used to test the Stokes–Einstein
relation. Moreover, the dynamic heterogeneity may not result in
the breakdown of the Stokes–Einstein relation.

The physical picture provided by our MD simulation results
is that, at room temperature or even a higher temperature, the
dynamic heterogeneity in ionic solutions is analogous to but a
little weaker than that in glass-forming liquids at a much lower

Fig. 14 (a) The frictional coefficient evaluated by a B E/v. (b) Testing the
Stokes–Einstein relation with D B T/a. The symbols are the simulated
results and the solid lines are fitted by D B (T/a)x4.

Fig. 15 The scaled effective hydrodynamic radius %a for K+ and SCN� at
different temperatures.
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temperature, and the structural heterogeneity caused by tran-
sient cluster formation results in the dynamic heterogeneity in
ionic solutions.
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75 N. Lačević, F. W. Starr, T. Schrøder and S. Glotzer, J. Chem.
Phys., 2003, 119, 7372–7387.

76 S. Karmakar, C. Dasgupta and S. Sastry, Proc. Natl. Acad. Sci.
U. S. A., 2009, 106, 3675–3679.

77 C. Donati, S. Franz, S. C. Glotzer and G. Parisi, J. Non-Cryst.
Solids, 2002, 307, 215–224.

78 A. Perera, Phys. Chem. Chem. Phys., 2017, 19, 1062–1073.
79 K. Binder and W. Kob, Glassy materials and disordered

solids: An introduction to their statistical mechanics, World
Scientific, 2011.

80 Z. Shi, P. G. Debenedetti and F. H. Stillinger, J. Chem. Phys.,
2013, 138, 12A526.

81 D. Jeong, M. Y. Choi, H. J. Kim and Y. Jung, Phys. Chem.
Chem. Phys., 2010, 12, 2001–2010.

82 L. O. Hedges, L. Maibaum, D. Chandler and J. P. Garrahan,
J. Chem. Phys., 2007, 127, 211101.

83 A. Ikeda and K. Miyazaki, Phys. Rev. Lett., 2011, 106, 015701.
84 L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev and

H. E. Stanley, Nat. Phys., 2009, 5, 565–569.
85 P. Kumar, S. V. Buldyrev, S. R. Becker, P. H. Poole,

F. W. Starr and H. E. Stanley, Proc. Natl. Acad. Sci. U. S. A.,
2007, 104, 9575–9579.

86 S. H. Lee and J. C. Rasaiah, J. Chem. Phys., 1994, 101, 6964–6974.
87 B. Hess, J. Chem. Phys., 2002, 116, 209–217.
88 S. Murad, J. Chem. Phys., 2011, 134, 114504.
89 R. Shi and Y. Wang, J. Phys. Chem. B, 2013, 117, 5102–5112.
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