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We propose a continuum theory of the liquid-liquid phase separation in an elastic network, where phase-
separated microscopic droplets rich in one fluid component can form as an interplay of fluids mixing,
droplet nucleation, network deformation, thermodynamic fluctuation, etc. We find that the size of the
phase-separated droplets decreases with the shear modulus of the elastic network in the form of
∝ ½modulus�−1=3 and the number density of the droplet increases almost linearly with the shear modulus
∝ ½modulus�, which are verified by the experimental observations. Phase diagrams in the space of
(fluid constitution, mixture interaction, network modulus) are provided, which can help to understand
similar phase separations in biological cells and also to guide fabrications of synthetic cells with desired
phase properties.
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Membraneless compartments (organelles) in cells are
often supramolecular assemblies composed of proteins,
nucleic acids, and other molecules [1–4]. Examples include
nucleolus in the nucleus, stress granules, centrosomes in
the cytoplasm, etc., and they usually provide physical
constraints for specific biochemical reactions. After the
liquidlike features of some membraneless compartments,
represented by P granules [5] and Xenopus germinal
vesicles [6], were experimentally identified, liquid-
liquid phase separation was proposed as a plausible
mechanism for the formation of such membraneless
compartments [7–11]. Different from typical liquid-liquid
phase separation in a one component system [12–14] or
multicomponent mixtures [15,16], where the mixing
energy of liquids is deterministic of whether phase
separation can occur or not, the case in cells is usually
more complicated due to the elastic constraint by the
cytoskeleton [17,18]. Thus, exploring the role of the
elastic network in liquid-liquid phase separation will be
important in understanding and predicting the properties
of the phase-separated products.
Attempting to learn how an elastic network can influence

the phase-separated products of liquid-liquid phase sepa-
ration, there are recent experimental studies [19,20] inves-
tigating the liquid-liquid phase separation of a fluorinated
oil-silicone oil mixture in a silicone polymer network. It is
found that the liquid-liquid phase separation can occur with
the formation of droplets rich in one fluid component
(fluorinated oil); with the increase of the elastic modulus of
the network, the droplet size decreases, while the number
density of the droplets increases (see Fig. 1). The critical

concentration of the fluorinated oil for its condensation
(droplet formation) in the elastic network has been related
with the stiffness of the network by thermodynamic argu-
ments [21,22] and the dynamics of droplets due to stiffness
gradient is discussed [23,24], while how to theoretically
characterize the relation between the droplet properties
(size, number density, etc.) and the network elasticity
remains unclear. The main difficulty lies in how to deal
with the system complexity incorporating mixing of differ-
ent fluids, droplet nucleation in a polymer network,
thermodynamic fluctuation, etc.
In this Letter, we treat the liquid-liquid phase separation

of an A=B fluid mixture in an elastic polymer network.

no elastic network(a) (b)
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FIG. 1. (a) Liquid-liquid phase separation in a free space
(without elastic network). (b) A few large droplets form in a
soft elastic network (small shear modulus). (c) Many small
droplets form in a moderate elastic network (moderate shear
modulus). (d) Inhibition of phase separation in a stiff elastic
network (large shear modulus).
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By constructing a free energy model of the system, which
incorporates the mixing entropy, the Flory-Huggins-type
interaction among the fluid mixture, the surface energy of
phase-separated droplets, and the elastic energy of the
droplets-deforming polymer network, we discuss thor-
oughly how network elasticity determines the conditions
of the phase separation and the properties of phase-
separated products, where the results are also compared
with the experiments.
When the liquid-liquid phase separation occurs, droplets

rich in one fluid component will form, and the number
density and the radius of the droplets are denoted as n and
R, respectively; then the volume fraction of the droplets is
equal to ν ¼ 4πnR3=3. Here we assume that the droplets
are monodisperse in size, following the experimental
observations [19], and such monodispersity mainly results
from the elastic constraint by the polymer network.
Considering the volume conservation of the A component,
there is the relation between the volume fraction of the A
component in the droplets ϕd

A and that in the bulk ϕb
A as

νϕd
A þ ð1 − νÞϕb

A ¼ ϕ0
A; ð1Þ

where ϕ0
A is the volume fraction of the A component in the

prepared state (before phase separation). The free energy
density of the system can be expressed as

F ðϕd
A;ϕ

b
A; ν; RÞ ¼ νfmixðϕd

AÞ þ ð1 − νÞfmixðϕb
AÞ

þ 3ν
γ

R
þ νfelðRÞ

− ξ½νϕd
A þ ð1 − νÞϕb

A − ϕ0
A�: ð2Þ

The first and the second termon the right-hand side of Eq. (2)
denote the mixing free energy density of two fluids (without
elastic constraint) inside and outside of the droplets,
respectively. For this free energy density fmixðϕAÞ, we adopt
the typical Flory-Huggins form [25], which consists of the
mixing entropy and the interaction between the fluids:
fmixðϕAÞ¼ðkBT=vAÞ½ϕA lnϕAþðvA=vBÞϕB lnϕBþχϕAϕB�,
where kB is the Boltzmann constant,T is the temperature, vA
and vB denote the volume of one A and one B liquid
molecule, respectively, ϕB ¼ 1 − ϕA is the volume fraction
of the B component and χ is the Flory-Huggins parameter
characterizing the interaction betweenA andB liquids. Note
that we treat the network component the same as the B
component in order to comparewith relevant experiments in
the later discussion, while it is straightforward to adapt the
theory to the case where the network component is different
from theA orB component. The third term inEq. (2) denotes
the interfacial energy density of the droplets where γ is the
surface tension. The fourth term in Eq. (2) denotes the elastic
energy induced by the droplets deforming the incompress-
ible elastic network [26,27]. The explicit expression of fel is
taken as felðRÞ¼ 3½1− ðR0=RÞ3�

R R=R0

1 λ2WðλÞ=ðλ3−1Þ2dλ

(see Ref. [26] or Supplemental Material [28] for details),
where R0 ≃ ðkBT=GÞ1=3 [29] denotes the mesh size of the
network withG as the shear modulus of the elastic network,
e.g.,R0 ≃ 0.01 μm forG ≃ 5 kPa. The functionWðλÞ in this
elastic term represents the elastic energy density of an
inflated spherical shell (like a thin spherical balloon), for
which we take the Gent model [30,31], i.e., WðλÞ ¼
− 1

2
GJm ln½1 − JðλÞ=Jm�, where JðλÞ ¼ 2λ2 þ λ−4 − 3 with

λ as the stretch ratio in the radial direction, and Jm is a
phenomenological parameter characterizing the finite
stretchability of the material (it is a fitting parameter in
later comparisons with experiments). Note that, if the
deformation is small, i.e., λ → 1, the Gent model reduces
to the neo-Hookean model, with WðλÞ ¼ 1

2
GJðλÞ. The last

term in Eq. (2) comes from the constraint in Eq. (1) with ξ as
a Lagrangian multiplier.
Chemical and mechanical balance.—By optimizing the

total energy density with respect to the volume fraction of
the A component in the phase-separated droplets ϕd

A and
that in the bulk ϕb

A, respectively, ∂F=∂ϕd
A ¼ ∂F=∂ϕb

A ¼ 0,
one can easily identify ξ as the chemical potential,

ξ ¼ f0mixðϕd
AÞ ¼ f0mixðϕb

AÞ: ð3Þ

In other words, the chemical potential of the A (B)
component in the phase-separated droplets and in the bulk
should be equal. By optimizing the energy density with
respect to thevolume fraction ν, i.e.,∂F=∂ν ¼ 0, there is the
relation fmixðϕd

AÞ−fmixðϕb
AÞ−ξðϕd

A−ϕb
AÞþ3γ=RþfelðRÞ¼0.

With the substitution of the chemical potential ξ ¼
f0mixðϕd

AÞ ¼ f0mixðϕb
AÞ, the pressure difference between the

droplet and the bulk ΔP should obey

ΔP ¼ Πðϕd
AÞ − Πðϕb

AÞ ¼
3γ

R
þ felðRÞ; ð4Þ

where Πðϕd
AÞ and Πðϕb

AÞ denote the osmotic pressure
in the droplet and in the bulk, respectively, by recalling
ΠðϕAÞ ¼ −fmixðϕAÞ þ ϕAf0mixðϕAÞ. Equation (4) indicates
the mechanical balance between the osmotic pressure, the
surface tension, and the elastic pressure. The inclusion of
the elastic contribution might induce different growth of the
droplets than the standard Ostwald ripening [20].
Droplet size and density.—Droplets rich in either A or B

component will form when liquid-liquid phase separation
occurs. After assuming that the droplets are monodisperse,
the size of droplets can be obtained by optimizing the total
energy density with respect to the radius of phase-separated
droplets R, ∂F=∂R¼−3νγ=R2þνdfel=dR¼ 0, obtaining

3γ

R2
¼ dfel

dR
: ð5Þ

Equation (5) indicates that the size of the droplets
is determined by the competition between the surface
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tension of the droplets and the elastic contribution of the
deformed elastic medium. By introducing the ratio between
the droplet radius and the mesh size of the network,
λR ¼ R=R0, we can rewrite Eq. (5) as 3αT ¼ λ2R=G ×
dfel=dλjλ¼λR

with the “thermal elastocapillary number"
defined as αT ¼ γ=ðGR0Þ ¼ γ=½G2=3ðkBTÞ1=3�, where the
mesh size is R0 ≃ ðkBT=GÞ1=3. Alternatively, we can define
a function gðλRÞ

gðλRÞ¼
λ2R
G
dfel
dλ

����
λ¼λR

≃
3λ4R

Gðλ3R−1Þ2WðλRÞ; λR ≫ 1; ð6Þ

for which one can refer to the Supplemental Material [28]
for more details. Once we know the thermal elastocapillary
number αT (given by the surface tension and the shear
modulus), then the droplet radius can be obtained as
λR ¼ g−1ð3αTÞ, R ¼ R0g−1ð3αTÞ.
With the Gent model, the ratio of the droplet radius to the

mesh size of the network λR increases with αT and soon
approaches its limiting value λm where λm →

ffiffiffiffiffiffiffiffiffiffiffi
Jm=2

p
for

Jm ≫ 1. In the range of αT > 5, the approximated solution
is

λR ≃ λm; R ≃ λmR0; ð7Þ

meaning that the size of the droplet is essentially deter-
mined by the limiting stretchability and the mesh size of the
material if αT is sufficiently large. One can show that the
implementation of the finite stretchability in the Gent
model is very important in predicting the droplet size,
while elastic models without this implementation, e.g., the
neo-Hookean model, does not work (see Supplemental
Material [28]). For the Gent model with λm > 100, the
pressure difference between the droplet and the bulk, ΔP in
Eq. (4), is almost a constant: ΔP ≃ 5G=2 [32,33]. Apart

from such elastically mediated liquid-liquid phase separa-
tion, there can be other possible means to form the finite-
sized membraneless organelles, e.g., by balancing the short-
range attraction (van der Waals interaction, etc.) and the
long-range repulsion (Coulomb interaction, etc.) among
fluid components [34,35] and by limiting the molecule
supply for building the phase-separated organelles [9,36].
Comparison with experiment.—In the experiments [19],

a fluorinated oil-silicone oil mixture is first prepared in a
silicone polymer network at 45 °C, with the fluorinated oil
at its saturation volume fraction, i.e., ϕsatð45 °CÞ ≃ 0.038.
(saturation volume fraction ϕsat: critical volume fraction
where a free binary fluid mixture without elastic network
starts phase separation). Then by quenching the system to
23 °C, at which a free mixture would have a lower
saturation volume fraction [ϕsatð23 °CÞ ≃ 0.028], phase
separation takes place with the formation of microsized
droplets rich in the fluorinated oil. By taking the A and B
components in the model as the fluorinated oil and the
silicone oil, respectively, we can directly compare the
theoretical results with the experiments. In the experiments
[19], vA ≃ 3.7 × 10−28 and vB ≃ 4.8 × 10−26 m3. The sur-
face tension is γ ≃ 0.004 N=m and the Flory-Huggins
parameter at 23 °C is χ ¼ 2.763. In this particular experi-
ment, although surface tension is important in determining
the size of phase-separated droplets as shown in Eq. (5), its
contribution is negligible in the criterion of phase separa-
tion compared with other terms (osmotic pressure and
elastic contribution) in Eq. (4) after assuming the spherical
shape of the droplets.
As shown in Fig. 2(a), the droplet size decreases

with the shear modulus of the elastic network, matching
with the experimental observations, and there is a
relation between the droplet size and shear modulus:
R≃ ðkBTÞ1=3ðJm=2Þ1=2G−1=3, following the analytic
expression in Eq. (7). Note that the stretching limit

(a) (b) (c)

FIG. 2. (a) Droplet radius, (b) number density, and (c) volume fraction of fluorinated oil (A component) in the bulk ϕb
A as a function of

the shear modulus of the elastic network. (b),(c) Inset: denotes the volume fraction of phase-separated droplets ν and the volume fraction
of fluorinated oil (A component) in the droplets ϕd

A as a function of the shear modulus of the elastic network, respectively. The red line in
(a) is obtained by R ¼ R0g−1ð3αTÞ and the green line in (a) is obtained by R ≃ ðkBTÞ1=3ðJm=2Þ1=2G−1=3. The red lines in (b) and (c) are
obtained by minimizing the energy in Eq. (2). The blue dots in (a) and (b) are experimental data [19]. Parameters are taken as follows:
volume fraction of fluorinated oil at the prepared state (before phase separation) ϕ0

A ¼ 0.038 (saturation volume fraction ϕsat at 45 °C,
volume of one fluorinated oil molecule vA ¼ 3.7 × 10−28 m3, volume of one silicone oil molecule vB ¼ 4.8 × 10−26 m3, surface tension
γ ¼ 0.004 N=m, the Flory-Huggins parameter χ ¼ 2.763, and Jm ¼ 8.82 × 106 in the Gent model.
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Jm ¼ 8.82 × 106 is taken as a constant, which is indepen-
dent of the shear modulus. One can also introduce the
dependence of Jm on the shear modulus (see Supplemental
Material [28]) and can easily obtain a better fitting in
Fig. 2(a), but here we will keep Jm as a constant for
simplicity. In experimental measurements, Young’s modu-
lus was used for describing the network elasticity E ¼ 3G,
and this conversion is taken into account in the comparison
between the theory and the experiments. As noted in the
inset of Fig. 2(b), the volume fraction of droplets ν slightly
decreases by increasing the shear modulus, in the
form of ν ¼ −8 × 10−6 kPa−1 × Gþ 0.01 (changing from
ν ≃ 1% without elastic network to ν ≃ 0.76% in a stiff
network with G ¼ 300 kPa). Meanwhile, the number den-
sity of the droplets can be obtained as n ¼ 3ν=ð4πR3Þ≃
6

ffiffiffi
2

p
νG=ð4πkBTJ3=2m Þ, which basically increases linearly

with the shear modulus, n ∝ G for small G as shown in
Fig. 2(b). In other words, more and smaller droplets will
form if the elastic network is stiffer. Remarkably, when
phase separation occurs, the volume fraction of fluorinated
oil (A component) in the droplets ϕd

A remains almost as a
constant (1 − ϕd

A ∼ 10−102) regardless of the shear modulus
G as shown in the inset of Fig. 2(c), while its volume fraction
in the bulk increases almost linearly with the shear modulus,
ϕb
AðGÞ≃ϕb

Að0Þ−ν¼ 0.028þ8×10−6 kPa−1×G as shown
in Fig. 2(c); this means that the droplets consist of almost
pure fluorinated oil.
In experiments, the shear modulus of the elastic network

is taken as a controllable parameter, where such an elastic
constraint can control the size of phase-separated droplets
as discussed above. Meanwhile, the elastic constraint can
also inhibit the liquid-liquid phase separation. Figure 3(a)
shows the phase diagram in the ϕA − χ plane for different
shear modulus G. At small χ, the system is homogeneous.
When the network is absent, the system is a binary mixture
of A=B with an aspect ratio N ¼ vB=vA. There is a critical
point at ðϕAÞc¼1=ð ffiffiffiffi

N
p þ1Þ, χc ¼ 1=2þ 1=

ffiffiffiffi
N

p þ 1=ð2NÞ
[37]. When χ > χc, there is a certain regime of ϕA at which
the homogeneous state becomes unstable and phase sep-
aration proceeds. The presence of the elastic network
moves the binodal line upward in the small-ϕA region.
Therefore, there are regions between the colored lines and
the black line in Fig. 3(a) where the homogeneous phase
remains stable in presence of the elastic network. The
critical value of the Flory-Huggins parameter χc increases
with the increasing shear modulus G. This is more clear in
Fig. 3(b), which shows the phase diagram in the ϕA–G
plane for different values of χ. At small G, there is a range
of ϕA where the homogeneous state is unstable. The
unstable region will be slightly reduced by increasing
the shear modulus, and when the critical value of Gc is
reached, the phase-separated region disappears and the
homogeneous state becomes stable.
In conclusion, we propose a continuum model of liquid-

liquid phase separation in an elastic network incorporating

fluids mixing, droplet nucleation, network deformation,
thermodynamic fluctuation, etc., and investigate quantita-
tively how network elasticity can influence such phenome-
non. When the phase separation occurs, the size of the
phase-separated droplets is found to decrease with the
increasing network elasticity in the form of a scaling law,
and the number density of the droplets increases almost
linearly; the theoretical results are verified by experimental
observations. Furthermore, phase diagrams in the planes of
Flory-Huggins parameter, shear modulus, and the volume
fraction of liquid compositions are constructed, providing
necessary conditions for liquid-liquid phase separation in
an elastic medium. This portable model can be easily
generalized to deal with the elastically mediated liquid-
liquid phase transition in more complicated systems such
as an elastically constrained ternary, quaternary,…,
fluid mixture, and can be predictive for producing
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FIG. 3. Phase diagram of elastically mediated liquid-liquid
phase separation (a) in the plane of (ϕA; χ) for different shear
modulus G and (b) in the plane of (ϕA; G) for different Flory-
Huggins parameter χ. HOM, homogeneous state without phase
separation; PS, phase separation. Parameters are taken as follows:
volume of one fluorinated oil molecule vA ¼ 3.7 × 10−28 m3,
and volume of one silicone oil molecule vB ¼ 4.8 × 10−26 m3.
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phase-separated droplets of desired size and density.
Moreover, we hope it can also provide new insight into
the formation of membraneless organelles constrained by
cytoskeleton.
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