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Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation∗
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Abstract To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate
by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one
α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD:
DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters
method are employed to analyze the data sampled from 2-µs equilibrium MD simulation trajectories. We find that seqA
and seqB have more stable structures than their native structures which become metastable when cut out of the protein
structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the
native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying
a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have
different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein
folding dynamics.

PACS numbers: 87.15.Cc, 87.15.A-, 87.15.ap, 87.15.Bg DOI: 10.1088/0253-6102/68/1/137
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1 Introduction
Proteins form major components in cell, whose struc-

tures are essential for their biological functions. Although
it is well-known that the three-dimensional (3D) struc-
tures of most globular proteins are encoded in their 1D
sequences,[1] there still lacks a systematic way to deter-
mine the structure of a protein according to its sequence.
Therefore, the number of known sequences is far larger
than the number of known protein 3D structures.[2] The
reliable prediction of the protein structure from sequence
thus has a significant importance.

One way for predicting the protein structure from se-
quence is utilizing the known native structures of sub-
sequences, which is known as “template-based modeling”
methods. By assuming that similar sequences lead to sim-
ilar structures, sequence search and alignment methods,
such as Position-Specific Iterated Basic Local Alignment
Search Tool (PSI-BLAST),[3] were developed. Thanks to
the expanded Protein Data Bank (PDB) and better al-
gorithms, the prediction accuracy of protein structures by
template-based modeling has been improved substantially
in the recent 20 years.[4−5] However, the improvements are
mainly for small proteins no more than 100 residues, and
the prediction accuracy is still less than 30% for larger and
more complex proteins.[6−7] Further improvements based
on template-based modeling methods are limited, espe-
cially for those proteins whose sub-sequences cannot be
found in the PDB databases. Another strategy for pro-
tein structure prediction is the so-called “free modeling”,

which predicts the folded structure from scratch. The
most successful implementation of free modeling is proba-
bly the “fragment assembly approach”.[8−11] This method
makes up the drawback of the template-based modeling by
a “divide and conquer” strategy which divides the target
protein sequence into several small fragments containing
8-12 residues[8,12] and searches for strong sequence signals
in these fragments.

The central step of the fragment assembly approach
is searching strong sequence signals for local geometries.
Many sequence-structure libraries have been established
in previous two decades, among which the most famous
one is the bioinformatics-based I-sites library.[13] Usually
the strong sequence signals of local geometries are sec-
ondary structural fragments, such as α-helix and β-turn.
As the preferred structure is roughly estimated, the cor-
responding 3D structure of a strong sequence occupies a
particular volume of the conformational space. Thus, it
is very useful to have a coarse-grained description of the
3D structure containing secondary structure information.
There are mainly three ways for coarse graining the 3D
coordinates of the fragments: based on phase partition,
based on representative points, or based on distribution
in the phase space, with the third the most precise one.
Clustering based on the distribution of the three angles in
a tetrapeptide (one torsional and two bending angles) pro-
vides an alphabet of 17 conformation letters.[14−15] With
the help of these conformation letters, we can identify the
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conservative motifs in a protein by searching in the protein
structure database.

Besides the bioinformatics-based methods mentioned
above, physics-based models may also contribute to the
sequence-structure library based on the assumption that
peptide fragments of proteins have intrinsic propensities
to form their native conformations, which has been tested
by both experiments and simulations.[16−20] The most no-
table simulation test is the full range test done by Ken A.
Dill et al.,[19−20] whose main conclusion is that, physics-
based modeling (molecular dynamics (MD) simulation in
their case) can be utilized to find the folding initiation
sites.

Using a protein G as an example, Dill et al.[19−20]

found eight fragments that show a preference to form their
native structures and several strong sequence signals of lo-
cal geometries serving as the folding initiation sites. How-
ever, they did not analyze in detail the stableness of those
strong sequence signals, which may better help us iden-
tify them. Furthermore, we are interested in the following
questions: why some sequences are more structured than
others? are there any competing substates besides the na-
tive structures? what are those substates? what are the
features of the free energy landscapes of the fragments in
aqueous solution?

To tackle those questions, we carried out long-time
equilibrium MD simulations on several fragments that
have particular meanings as folding initiation sites. In
the α-helix region, we select seqB (KVFKQYAN) because
it has been identified by both the I-sites prediction and
the conformation letters prediction but claimed unsta-
ble by Dill et al.[19] In the N-terminal β-hairpin region,
we select seqA (LNGKTLKG) since it has been identi-
fied by Dill et al.[19] as a stable nucleus but not by both
the bioinformatics-based methods. In the C-terminal β-
hairpin region, we select seqC (YDDATKTF) as it has
been identified by all the three methods and it is interest-
ing to explore the stableness of seqC and find the difference
between seqA and seqC. In addition, a native β-strand
fragment (seqD: DGEWTYDD), which is expected to be
amorphous when standing alone, has also been chosen for
the purpose of comparison. The data analyses on our MD
simulation results of the four fragments indicate that both
seqA and seqB have a more stable structure than the na-
tive structure; seqD is flexible and does not have a stable
structure; seqC can be stabilized on its native structure
but difficult to reach the native structure if starting from
an initial configuration different from the native structure.
Those results suggest that fragments in key locations of
protein structure have different stableness and play differ-
ent roles in protein folding dynamics which may contribute
differently to the hierarchy of protein folding dynamics.

2 Methods

2.1 Simulation Methods

The four 8-mer fragments mentioned above were cut
out from the PDB ID 2GB1 protein structure[21] and
capped with Ace and Nme. Their locations in the full

protein G are shown in Fig. 1. For each fragment, the
data were collected from totally 2-µs equilibrium simula-
tions.

Fig. 1 (Color online) The four simulated fragments cut
out from the protein G. For seqA, seqB, and seqC (col-
ored by red), the underlined four-letters central sequences
have specific structures generally supposed to serve as the
folding nuclei during protein folding. The centers of seqA
and seqC are β-turns and the center of seqB is a helical
ring. A single β-strand fragment seqD (colored by blue)
is also cut out and simulated for comparison.

MD simulations were performed with the GROMACS
4.6.2 simulation package.[22] The peptides were modeled
by the OPLS-AA/L force field[23] because it had been
widely used in MD simulations of β-hairpin folding,[24−25]

and water molecules were modeled by the TIP4P ex-
plicit water model.[26] The particle mesh Ewald (PME)
method[27] was adopted to handle the long-range electro-
static interactions. The NPT ensemble was realized by
the Nosé-Hoover temperature coupling scheme[28] and the
Parrinello-Rahman pressure coupling scheme.[29] For each
peptide, 4000 solvent water molecules were added in the
cubic simulation box. The simulation timestep was 2 fs
and the instantaneous configurations were sampled every
100 ps. A 520-ns NPT simulation was carried out for
each instance with the first 20-ns equilibration period dis-
carded. For each peptide, four independent 500-ns in-
stances were simulated, with two starting from the ex-
tended structure and the other two from the native struc-
ture, to check the initial structure dependency and exam-
ine the folding pathway.[30]

2.2 Clustering of the Trajectories

To analyze the conformational space of the fragments
accessed by the MD simulations, we designed a clustering
technique as follows. For each fragment, the total 2-µs
trajectories were first divided into 100 coarse-grained mi-
crostates. These 100 microstates were further lumped into
several metastable states. These metastable states were
then analyzed to have a comprehensive understanding of
the fragments.

A similarity score between different conformations
should be defined to group the configurations in a trajec-
tory into different microstates. The most commonly used
one is the root-mean-square deviation (RMSD) between
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different samples. However, RMSD contains only struc-
tural information and cannot eliminate the possibility that
two configurations have a small RMSD whereas a big en-
ergy barrier between them. To avoid this problem, one
can first split the conformational space into several coarse-
grained regions using the a priori knowledge of the confor-
mational space distributions, and then group the config-
urations into those coarse-grained regions. This method
greatly reduces the possibility that two energetically un-
accessible configurations are grouped together. Another
advantage of this method is that it is independent of the
sample size. We chose the coarse-grained 17 conformation
letters,[14] whose convenience also includes that it has a
substitution matrix CLESUM that can be used to calcu-
late the similarity score between different conformations
letters. Each 8-mer in our simulations can be translated
into a 5-letters string, since each conformational letter rep-
resents a structure formed by 4 residues. The similarity
score between two conformations is defined as

Smn =

5∑
i=1

wiC(Xni, Xmi) = wC , (1)

where C(Xni, Xmi) is the matrix element of (Xni,
Xmi) in CLESUM. The weight vector w = (1/10,
1/5, 2/5, 1/5, 1/10) for the 5-letters string allows the more
centered ones contribute more to Smn.

This similarity score is then incorporated into the
Daura’s clustering method,[31] which has been extensively
used in protein structure analyses,[32−33] to group all the
sampled structures into 100 microstates. Two strings are
considered neighbors if their similarity score is less than

150. The clustering procedure takes the following steps.
(a) The number of neighbors for each configuration is cal-
culated according to the neighboring criterion. (b) The
configuration that has the most neighbors is grouped along
with its neighbors into one cluster. (c) The configurations
in this cluster are deleted from the configurations pool.
(d) The above steps are repeated for 100 times, which
generates 100 microstates and associated 100 representa-
tive configurations of those microstates.

The Markov State Model (MSM) clustering me-
thod[34−35] is then employed to further adaptively lump
those 100 microstates into several metastable substates.
The MSM clustering method is on the basis of the hy-
pothesis that the random transitions between adequately
large metastable substates are less frequent than the tran-
sitions inside each metastable state. One of the routinely
used software EMMA[36] implementing the MSM method
was adopted to perform the clustering and related data
analyses.

3 Results and Discussion

3.1 Stable Regions Identified with PDB

As mentioned above, conformation letters can be used
to identify the stable regions of a protein according to
its amino acid sequences. To find the stable regions in
the protein G, we used PDB 3D structure library PDB
Select 25[37] to assess the structural conservativeness of
a specific sequence. This library has a good balance be-
tween reducing the sequence redundancy and preserving
the sequence diversity.

Fig. 2 (Color online) The values of N1 (red curve) and N2 (black curve) along the amino acid sequence of the
protein G. N1 denotes the number of sequences similar to A1 for each 5-mer. N2 denotes the number of sequences
similar to Ak (the first sequence not similar to A1) for each 5-mer. A larger N1 and a smaller N2 indicate that
the corresponding sequence is more conservative. The locations of the four selected fragments are marked below
the amino acid sequence.

Every 5-mer in protein G is set as a unit, correspond-

ing to a coarse-grained 2-letters string of the conformation

letters description. With a sliding window of 1, we can ob-

tain all the 5-mers in the 56-residues sequence of the pro-

tein G. For each 5-mer, it is then compared with PDB

Select 25. The 100 most similar sequences in the library

were kept and denoted as A1, A2, . . ., A100 from the most

similar one to the least similar one. The corresponding

2-letters strings σ(Ai) were also recorded.

All the 100 2-letters strings were compared with the

first string σ(A1), and those with a structural similarity

score higher than 0 were considered as similar. The num-

ber of sequences similar to A1 was denoted as N1. The

first apparently different sequence was denoted as Ak. By
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the same rule, we calculated the number of sequences sim-
ilar to Ak, denoted as N2. The values of N1 and N2 along
the residue sequence are shown in Fig. 2. Using the confor-
mation letters and the PDB Select 25 database, we then
identified several conservative sequences in the protein G:
FKQY is the most conservative component followed by
DATK. These two regions are the central parts of seqB
and seqC, consistent with our MD simulation results be-
low.

3.2 Stabilities of Fragments Studied by MD
Simulations

(i) α-helix Fragment seqB
The simulation data for seqB were first ana-

lyzed by calculating the radius of gyration Rg (≡√
(1/N)

∑N
k=1 (rk − rmean)2, where N is the total num-

ber of atoms in the peptide, rmean is the mean position of

the peptide) and the RMSD (≡
√
(1/N)

∑N
k=1 δ

2
k, where

δk is the distance between Cα atom k and its reference)
with respect to its native conformation in the protein G.
The probability map in the RMSD-Rg space for seqB is
shown in Fig. 3. Although the configurations are clus-
tered naturally in this map, it is still too rough to man-
ually identify the substates. Therefore, we further ap-

plied the MSM method to the probability map to auto-
matically identify the substates, which groups the config-
urations into four substates: the native-like substate BF1
(A/B/C/D stands for seqA/seqB/seqC/seqD, F/E stands
for folded/extended), the half-folded substate BF2, an-
other isolated stable substate BF3, and the extended sub-
state BE, as shown in Figs. 3 and 4. The lifetime and
portion of each substate is also shown in Fig. 3.

Fig. 3 (Color online) The RMSD-Rg probability map
for seqB, marked with the names, lifetimes, and appear-
ance probabilities of the four substates.

Fig. 4 (Color online) The four substates of seqB obtained by the MSM clustering method.

Figure 5 shows the native structure of seqB and the

representative structure of substate BF1. We can see that

the substate BF1 is very close to its native state. In the

native structure, four typical α-type hydrogen bonds (H-

bonds) (i → i + 4) are formed and two aromatic side

chains are stretched out towards the same direction. The

representative structure of BF1 is stabilized by three H-

bonds: two (Val29:O-Gln32:NH and Phe30:O-Tyr33:NH)

are 310-type H-bonds (i → i + 3) and one (Phe30:O-

Ala34:NH) is a typical α-type H-bond. The contents

of Val29:O-Gln32NH, Phe30:O-Tyr33:NH, and Phe30:O-

Ala34:NH are 47.5%, 72.5% and 36.7%, respectively. The

representative structure is the one with the largest ap-

pearance probability in BF1, while the native structure
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also appears with a smaller probability. In Fig. 6, we show
a transition process between the representative structure
of BF1 and the native structure observed during the MD
simulation characterized by the formation of a particu-
lar H-bond between Val29:O and Tyr33:NH. The break of
the H-bond between Val29:O and Gln32:NH is the precon-

dition for the structural adjustment to form the H-bond
Val29:O-Tyr33:NH. Thereafter, the break of the H-bond
Phe30:O-Tyr33:NH indicates the completion of the tran-
sition from the 310-helix to the α-helix. The high content
of the H-bond Phe30:O-Tyr33:NH indicates that there is
an energy barrier for this structural transition.

Fig. 5 (Color online) The native structure of seqB (a) and the representative structure of substate BF1 (b).
H-bonds are depicted by dashed yellow lines.

Fig. 6 (Color online) A transition process obtained in the MD simulation between the representative structure
of substate BF1 and the native structure of seqB. (a) RMSD with respect to the native structure vs. time.
Samples that represent the BF1 representative structure (5-letters string AJJKL) and native structure (5-letters
string XHHIX, where X means an arbitrary conformations letter) are explicitly shown with green points and cyan
points. The RMSD values of these points are set as the average value of all the corresponding sample points. The
transition process (100 ns to 150 ns) are illustrated with more detail in (b), shown with the length of the four
H-bonds that form or break during this process. Typically, the length of O-H is less than 0.2 nm indicates that
an H-bond forms.[38−39]

Two other folded substates BF2 and BF3 besides BF1
have also been identified, whose representative structures
are shown in Fig. 7. BF3 is stabilized by the H-bonds
Phe30:O-Tyr33:NH and Lys31:O-Ala34:NH. Since it has
a small probability (2%) and a large RMSD with respect to
the native structure, it can be regarded as an unstable sub-
state affecting little to the folding process of seqB. By con-
trast, BF2 has a large probability (52%) and a relatively
small difference of RMSD comparing to BF1. Figure 7
shows that BF2 has a much looser structure than BF1 and
thus includes several adjacent microstates. It is stabilized

by two independent 310-type H-bonds: Lys28:O-Lys31:NH

and Lys31:O-Ala34:NH with the contents of only 32.9%

and 14.6%, respectively. Therefore, BF2 can be regarded

as a collection of several intermediate metastable (or half-

folded) substates towards the native structure of seqB.

Figure 3 shows that the lifetime of these metastable

substates ranges from 0.6 ns to 7.7 ns, indicating that

both the forming and breaking processes of this α-helix

are very fast, consistent with the previous observation by

Noé and Fischer.[35]
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Fig. 7 (Color online) Representative structures of BF2 and BF3 for seqB. H-bonds are depicted by dashed yellow
lines.

(ii) β-turn Fragment seqA
The probability map of the RMSD-Rg space for seqA

is shown in Fig. 8 and the substates clustered with the
MSM method is shown in Fig. 9. All the configurations
sampled from the MD simulations are grouped into three
substates: the extended substate AE, the native-like sub-
state AF1, and an alternative folded substate AF2. Repre-
sentative structures of substates AF1 and AF2 are shown
in Fig. 10.

As shown in Fig. 10(a), the representative structure
of AF1 is close to its native structure. It is mainly sta-
bilized by four H-bonds: the upper two (with Gly9 and
Leu12 involved) and the lower two (with Leu7 and Gly14
involved). The forming probabilities of these hydrogen
bonds were calculated to be 28.4% and 25.8% for the up-
per two (Gly9:NH-Leu12:O and Gly9:O-Leu12:NH), and
6.7% and 4.2% for the lower two (Leu7:O-Gly14:NH and

Leu7:NH-Gly14:O), respectively. These numbers indicate
that, in the native structure, the upper two H-bonds are
more stable than the lower two.

Fig. 8 (Color online) RMSD-Rg probability map for
seqA, marked with the names, lifetimes, and appearance
probabilities of the three substates.

Fig. 9 (Color online) Substates of seqA determined by the MSM clustering method.
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Fig. 10 (Color online) Representative structures of substates AF1 (a) and AF2 (b) for seqA. In (a), the native
structure is shown as pink background and has the Cα atoms aligned with the representative structure of substate
AF1. H-bonds are depicted by dashed yelow lines.

Because the content of AF2 is 38.5% and has a nar-
row RMSD deviation, it can be regarded as a dom-
inant substate during the simulation and has a well-
characterized structure. This can be further confirmed
by the simulation result drawn in Fig. 11, which shows
that seqA stays in AF2 for more than 100 ns in one of
our four 500-ns simulations. The representative structure
of AF2, shown in Fig. 10(b), is also a β-turn structure
forming three H-bonds—Ace6:O-Lys13:NH, Asn8:NH-
Thr11:O, and Asn8:OD-Thr11:OH with the content of
42%, 50% and 34%, respectively.

Fig. 11 (Color online) Time evolvement of the RMSD
of all configurations in a 500-ns trajectory (green line)
with respect to the native structure of seqA. The config-
urations belonging to AF2 (red plus sign), and the dis-
tance between Leu7:CG and Leu12:CG (blue line) are
also shown.

The fact that AF1 (native-like substate) is less stable
than AF2 can be understood by considering the follow-

ing two reasons. First, seqA, whose amino acid sequence
is LNGKTLKG, contains two Gly residues. Its native
structure is stabilized by four H-bonds, two of which have
Gly involved (Gly9:NH-Leu12:O and Leu7:O-Gly14:NH).
Since Gly has a small side chain, in the short peptide it
prefers to stay in the center region of the β-turn rather
than form hydrogen bonds.[40] Second, each of the two
Leus in this sequence has a hydrophobic side chain that
do not like to reside in an aqueous environment. In the
full protein G, these two side chains protrude to the in-
ner side of the protein (shown in Fig. 12(a)) to effectively
lower their free energy cost. When the peptide is cut out
and isolated in water, the two side chains are pushed to
approach to each other by the hydrophobic interaction to
reduce the accessible area to water. The above two factors
allow AF2 to be more stable than the native structure of
seqA. The structures of AF1 and AF2 are further com-
pared in Fig. 12(b) with the difference of the distance be-
tween Leu7:CG and Leu12:CG emphasized. Note that our
results for seqA are different from Dill et al.,[19−20] who
have concluded that the native structure is the most stable
one. The difference might be attributed to the different
models adopted in each simulation work. Since the ex-
plicit TIP4P solvent model we have used is more accurate
than the GB/SA implicit solvent model they have used,
we believe our results are more convincing than theirs.

As shown in Fig. 13, the native-like substate of seqA
(AF1) can be stable for 30 ns, a little shorter than the
100-ns stable time of AF2. Therefore, AF2 is a major
obstacle for seqA to fold to its native structure. Never-
theless, since the native structure is still metastable, we
propose that seqA still serves as an early nucleus during
the protein folding process of the protein G, which might



144 Communications in Theoretical Physics Vol. 68

have to spend a lot of time to go through the energy bar-
rier between AF2 and AF1.

Fig. 12 (Color online) Locations of the hydrophobic side
chains of Leu7 and Leu12 in seqA in the native structure
of the protein G (a) and the representative configurations
of AF1 and AF2 (b). The distances between Leu7:CG
and Leu12:CG are marked by dashed yellow lines.

Fig. 13 (Color online) RMSD of seqA with respect to
its native structure vs. time. The native structure rep-
resented by the 5-letters conformational string XAKMX
(red plus signs) can last continuously for 30 ns.

(iii) β-turn Fragment seqC
As shown in Fig. 14, the native structure of seqC start-

ing from the native structure is stable and does not trans-
form into other structures during the 500-ns MD simula-
tion. On the other hand, simulations starting from ex-
tended configurations can hardly visit the native struc-
ture. The RMSD-Rg probability maps shown in Fig. 15
indicate that there is a big gap between the conformation
space explored by the simulations with the native initial

structure and the extended initial structure. By applying
the MSM clustering method, the RMSD-Rg space start-
ing from the extended structure can be further split into
three substates, whose appearance probabilities are 36.6%
for CF1, 20% for CF2, and 43.4% for CF3 (Figs. 15(b)
and 16). Their representative structures are illustrated in
Fig. 17.

Fig. 14 (Color online) RMSDs with respect to the na-
tive structure for the MD simulations starting from the
native structure and the extended structure of seqC.

After a long time simulation, the stable structure of
seqC slightly deviates from its native structure, as shown
in Fig. 18. Two extra H-bonds between Asp47:COO−

and Lys50:NH3 as well as between Tyr45:OH and
Asp47:COO− are formed, and the H-bond between
Asp46:O and Thr49:NH is replaced by Asp46:COO−-
Thr49:NH. In addition, Asp46:COO− forms H-bond with
Thr49:OH, consistent with the results by Liao et al.[24]

Why is it difficult for seqC to reach the native struc-
ture starting from the extended conformation? We can
see from Fig. 17 that, for the two most populated sub-
states CF1 and CF3, it is not difficult to form the H-
bonds in the β-turn central region Asp47-Ala48-Thr49-
Lys50, as the contents for Asp47:O-Lys50:NH in CF3 and
CF1 are 17.5% and 34.4%, respectively. Moreover, the
RMSDs shown in Fig. 19 indicate that the central four
residues Asp47-Ala48-Thr49-Lys50 form a structure sim-
ilar to the native structure. We propose that the lack
of hydrophobic interactions in the two ends of this se-
quence allows the formation of other structures, which is
supported by the recent works on β-hairpin.[25,41−43] Ac-
tually, the C-terminal β-hairpin of the protein G (41-56 in
the sequence), whose central region is seqC, has been ex-
tensively studied as a model β-hairpin [44−46] and found
to be very stable in aqueous solution. There had been
disputed on whether the hydrophobic region or the turn
region forms first during the folding of this β-hairpin,[25,47]

but the enhanced computational capacity has been provid-
ing more evidences to support that the turn forms first,
followed by the hydrophobic region.[25,41] Our results also
indirectly support the turn-centric folding mechanism for
β-hairpin formation.
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Fig. 15 (Color online) Probability map of RMSD-Rg space for seqC generated from the MD simulations starting
from the native structure (a) and from the extended structure (b). The latter can be further split into three major
substates: CF1, CF2 and CF3, shown with their names, lifetimes, and appearance probabilities.

Fig. 16 (Color online) Separated plots for the RMSD-Rg spaces of CF1, CF2, and CF3 starting from the
extended structure, obtained by MSM clustering method.

Fig. 17 (Color online) Representative structures of the three major substates starting from the extended
structure of seqC. (a) CF3 is mainly stabilized by three 310-type H-bonds of Asp46:O-Thr49:NH, Asp47:O-
Lys50:NH and Thr49:O-Phe52:NH, and another two H-bonds of Asp46:COO−-Ala48:NH and Asp47:COO−-
Lys50:NH3. (b) CF2 is mainly stabilized by three H-bonds of Tyr49:O-Asp46:NH, Ace44:O-Thr51:NH, and
Asp47:COO−-Ala48:NH. (c) CF1 is stabilized mainly by four H-bonds: Asp47:COO−-Thr49:NH, Asp47:COO−-
Thr49:OH,Asp47:O-Lys50:NH, and Asp46:COO−-Lys50:NH3.
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Fig. 18 (Color online) (a) H-bonds formed during the
simulation of seqC starting from its native structure. The
newly formed H-bonds compared with the native struc-
ture are shown in (b) and (c) from two perspectives.

The metastable substate CF3 is a helix-coil structure.
Some previous studies [19,48−49] have also found this sub-
state as a misfolded one during the folding process of the
C-terminal β-hairpin of the protein G. Since Asp46:COO−

does not form any H-bonds, CF2 is not as stable as the
other two substates.

Both seqA and seqC are β-turns in the native structure
of the protein G, but they show different stabilities when
being solvated in water as individual short peptides. The
native structure of seqC can survive more than 500 ns, im-
plying a funnel-shape free energy landscape[50−51] of seqC
in aqueous solution; whereas the native structure of seqA
transforms into other structures.

Fig. 19 (Color online) RMSDs with respect to the na-
tive structure for different segments of seqC. The center
segment DATK has the least RMSD comparing to the
other two segments.

(iv) β-strand Fragment seqD
Since seqD is an unpaired β-strand, it is expected not

to form the native structure when cutting out from the
protein and standing alone in aqueous solution. Two
structured substates besides the unstructured extended
substate are identified by the combination of the prob-
ability map and the MSM method, whose representa-
tive structures are shown in Fig. 20. DF1 is stabilized
mainly by two 310 type H-bonds (Gly41:O-Thr44:NH and
Glu42:O-Tyr45:NH). DF2 is stabilized by three H-bonds
formed between Glu42:COO− and Trp43:NH, Thr44:NH,
Thr44:OH. The appearance probabilities of DF1 and DF2
are also shown in Fig. 20. All other configurations belong
to the extended substate, which has the largest of proba-
bility as 45.8% and is much larger than the previous three
fragments. This result shows that seqD is very flexible
and does not has a very stable structure.

Fig. 20 (Color online) Representative structures and appearance probabilities of DF1 and DF2 of seqD.

To compare seqD with the other three short peptides,
we plot the probability maps in the Rg–H-bonds space for
all the four peptides in Fig. 21. It can be seen that seqA
and seqC are more structured, whereas seqB and seqD are
difficult to form compact structures.

(v) Relation between 310-helix and α-helix
There are mainly two kinds of helical secondary struc-

tures: α-helix (with i → i+ 4 hydrogen bonding) and
310-helix (with i → i+ 3 hydrogen bonding). α-helix is
the most common one constituting about 80% of all helical
structures, and 310-helix is the second most populated one
and constitutes about 20% of all helical structures,[52−53]

whose portion is larger in short peptides and termini of
longer α-helix proteins.[54] The general explanation is that
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α-helix has more interactions than 310-helix with sur-
rounding atomic groups and solvent molecules, so the en-
tropy cost associated with folding is more readily compen-
sated in a long helix or full protein. Experiments and MD
simulations on 3K and MW peptides (both are 16-mers)
also showed that 310-helices are present throughout the
peptides, with a great contribution at the termini.[54−55]

Moreover, Millhauser proposed that 310-helix is an impor-
tant intermediate state along the folding/unfolding path-
way of α-helix.[56]

Our results for seqB, seqC, and seqD also show that

310-helix is a very common structure that short peptides
tend to form. The transition of seqB from 310-helix sub-
state BF1 to the native structure supports the statement
that 310-helix can act as an important intermediate state
to form α-helix. Three out of five H-bonds in seqC that
stabilize the structure of helical-coil substate CF3 are 310-
type H-bonds. Two H-bonds in seqD that stabilize the
structure of substate DF1 are also 310-type H-bonds. All
the above results manifest the preference of 310-helix in
short peptides, consistent with previous simulation works
and proposed theories.[54−55]

Fig. 21 (Color online) The Rg–H-bonds probability maps for all the four short peptides. (a) seqA; (b) seqB;
(c) seqC; (d) seqD, marked with the names, lifetimes, and appearance probabilities of substates DF1 and DF2.

4 Conclusions
In summary, the stand-alone stabilities in aqueous so-

lution of four key fragments, one α-helix, two β-turns, and
one unpaired β-strand, essential for the folding dynamics
of a protein G are simulated and analyzed in detail. The
most stable substates of β-turn fragments are more com-
pact than the α-helix and β-strand. The native substate
of the α-helix fragment seqB is less stable than a 310-helix
substate, in good agreement with many previous simu-
lation results.[54−55] Since α-helix structure also appears
in our simulations, there is still a great possibility that
seqB acts as an early nucleus during the folding of the
protein G. The β-turn fragments seqA and seqC show dif-
ferent folding mechanisms despite the fact that they have
the same type of secondary structure. The native struc-
ture of seqA is not stable when isolated in water, and
an alternative substate AF2 becomes more stable during
the simulations. Whereas, the native structure of seqC is
very stable, but the simulations starting from an extended
initial structure can hardly find the native structure, im-

plying a funnel-shape free energy landscape of seqC in
aqueous solution. As expected, the unpaired seqD alone
is not stable in aqueous solution.

These results indicate that most of the key small frag-
ments have several possible metastable structures when
standing alone and many times the native structure is not
the most stable one. However, they will be stable in their
native structures when they are part of the whole protein
under appropriate solvation condition. Thus, we speculate
that their interactions with the whole protein and solva-
tion condition are important for them to stable at the fi-
nal structures. The several possible metastable structures
when standing alone show the softness of those peptide
fragments, which may be important for the adjustment
of the protein during the folding process. On the other
hand, the conservativeness of the key peptide fragments
showed in our simulation may also be important for guid-
ing the protein folding process towards the correct folded
structure. This inference needs further evidence from the
simulations of whole protein folding. Overall, our simu-
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lation results demonstrate the heterogeneity of key small
fragments and provide some information to the complex

hierarchial folding dynamics of protein.
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