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Conservation of the Stokes–Einstein relation in
supercooled water†

Gan Ren a and Yanting Wang *bc

The Stokes–Einstein (SE) relation is commonly regarded as being

breakdown in supercooled water. However, this conclusion is

drawn by testing the validity of some variants of the SE relation

rather than its original form, and it appears conflicting with the fact

that supercooled water is in its local equilibrium. In this work, we

show by molecular dynamics simulations that the Stokes–Einstein

relation is indeed conserved in supercooled water. The inconsis-

tency between the original SE relation and its variants comes from

two facts: (1) the substitutes of the shear viscosity in the SE variants

are only approximate relations; and (2) the effective hydrodynamic

radius actually decreases with decreasing temperature, instead of

being a constant as assumed in the SE variants.

The Stokes–Einstein (SE) relation1 combines the Einstein rela-
tion D = kBT/a and Stokes’ formula for hard-sphere particles
moving in a viscous fluid a = CZa, where D is the diffusion
coefficient, kB is the Boltzmann constant, T is the temperature,
a is the frictional coefficient, Z is the shear viscosity, a is the
effective hydrodynamic radius, and C is a constant depending
on the boundary conditions. The SE relation has been success-
fully applied to many cases, such as colloids,2,3 solutions,4 hard
sphere systems,5 and pure liquids.6 On the other hand, it is also
frequently found to break down in complex and supercooled
liquids, especially in supercooled water.7–11 However, instead of
its original form, the validity of the SE relation in supercooled
water was tested by its three variants, D B T/Z,9,10 D B t�1,12,13

and D B T/t,7,14 where t is the structural relaxation time.

The expression D B T/Z becomes a substitute by assuming that
a is a constant in homogeneous liquids. Due to the difficulty of
accurately determining Z in molecular dynamics (MD) simula-
tions (although it can be done to a certain extent by non-
equilibrium MD simulations as we do in this work), t is
frequently adopted to replace Z, resulting in the variant
D B t�1 under a further assumption that t has a similar
temperature dependence as Z/T.12,13 Finally, besides the
assumption that a is a constant, the variant D B T/t comes
from the approximate relation Z = GNt,7,14 where GN is the
instantaneous shear modulus presumed to be a constant.

Because the above assumptions are ad hoc, testing the
validity of the SE relation by its variants in supercooled water
is questionable. Furthermore, since supercooled water is still in
its local equilibrium, it is not unreasonable that the SE relation
is actually conserved. In this work, we perform MD simulations
with the TIP5P water model and the Jagla fluid model, respec-
tively, to check the consistency between the original SE relation
and its variants in supercooled water. These two models were
adopted because they had previously been used to explore the
anomaly and the validity of the SE relation in supercooled
water.7,14–16 Below the simulation results with the TIP5P model
are presented in the main text, and those with the Jagla model
can be found in the ESI.† The simulation results with both
models qualitatively agree with each other very well.

All our MD simulations were performed with the GROMACS
simulation package.17,18 The periodic boundary conditions
were applied in all three directions of the Cartesian space
and the system temperature was kept constant using a Nosé–
Hoover thermostat with a time constant of 0.2 ps.19,20 The
particle mesh Ewald algorithm21 was employed to calculate the
long-range electrostatic interactions with a cutoff of 1.2 nm in
the real space and the van der Waals interactions were calcu-
lated directly with a truncated spherical cutoff of 1.2 nm. The
system simulated with the TIP5P model consists of 2048 water
molecules with a constant density of r = 0.976 g cm�3. Twenty-
five simulated temperatures are distributed in the range of
240–390 K. The simulation time step is 1 fs and the simulated
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time for each case ranges from 1 to 100 ns depending on the
temperature.

To examine the three variants, we have to first determine the
diffusion coefficient D, structural relaxation time t, shear
viscosity Z, and frictional coefficient a. The diffusion coefficient
is calculated via its asymptotic relation with the mean square

displacement D ¼ lim
t!1

Dr2 tð Þ
� ��

6t, where Dr(t) is the particle

position displacement and hi denotes the ensemble average.
The calculated D values are plotted in Fig. S1a (ESI†).

The structural relaxation of water is described by the self-

intermediate scattering function Fs k; tð Þ ¼ 1

N

PN
i

eik�Dr tð Þ� �
, where

N is the number of water molecules, the wavevector k is usually
chosen as where the first maximum of the static structure factor
is allocated, which is 24.5 nm�1 for the TIP5P model. Since the
structural relaxation usually follows an exponential relaxation,
t is determined by Fs(k,t) = e�1. The calculated t values as a
function of T with k values within the range of 2.5–24.5 nm�1

with an interval of 2 nm�1 are plotted in Fig. S2a (ESI†).
The method proposed by Hess22 was employed to determine

the shear viscosity because of its reliability and fast conver-
gence. In this method, an external force ax = A cos(qz) is applied
in the X direction, where A is the maximum of ax and q = 2p/l
with l being the simulation box size and z being the position in
the Z direction. The steady-state solution of the Navier–Stokes
equation qtux + ux�rux = � (Z/r)r2ux + ax in the X direction is
ux(z) = V cos(qz), where V is the maximum value of ux(z). There-
fore, the shear viscosity can be calculated by Z = Ar/Vq2. Because
both r and q are constants, we use the ratio A/V to evaluate Z,
whose values are plotted in Fig. S3a (ESI†).

The frictional coefficient a was determined by applying a
constant external force Fe on 128 selected molecules and all
other particles are treated as the background media. In the
linear-response regime, the frictional force on an ion fr = avr is
equal to Fe after reaching the non-equilibrium steady state,
where vr ¼ lim

t!1
rðtÞh i=t. The frictional coefficient can thus be

determined by a = Fe/vr, as plotted in Fig. S4a (ESI†).
Based on D, t, Z, and a shown in Fig. S1–S4 (ESI†), we fit our

simulation data with the three formulas D B t�x1, D B (t/T)�x2

(t calculated with k = 24.5 nm�1), and D B (Z/T)�x3 to test the
three variants. Moreover, D B (a/T)�x4 are fitted to test
the Einstein relation. A variant or the Einstein relation is valid
if the corresponding exponent xi C 1.0 (i = 1, 2, 3 or 4), and
invalid otherwise. To facilitate the determination of the expo-
nents, the logarithm of D versus logarithms of t, t/T, Z/T, and
a/T, respectively, are calculated and plotted in Fig. 1.

It can be seen from Fig. 1a and b that both x1 and x2 deviate
significantly from 1.0, indicating the breakdown of D B t�1

and D B T/t. Each set of the data can be divided into two parts
by a crossover temperature Tx, and each part can be well fitted
by a fractional form with a different x value. The Tx value is
285 K for D B t�x1 and 280 K for D B (t/T)�x2, both with x1,
x2 o 1 at T 4 Tx and x1, x2 4 1 at T 4 Tx. Similar phenomena
have been observed by Chen et al.11,13 and Xu et al.7 As shown
in Fig. 1c, D B (Z/T)�x3 also follows two fractional forms with

Tx E 280 K. While x3 = 0.99 manifests that D B T/Z is valid at
T 4 Tx, x3 = 0.82 suggests its breakdown at T 4 Tx. This agrees
with not only the experimental observation in water that x3 = 1
at high temperatures and x3 = 0.8 at low temperatures,10 but
also the simulation results with the TIP4P/2005 water model.9

By contrast, as shown in Fig. 1d, the fitted exponent x = 1.01 for
the whole simulated temperature range is so close to 1.0 that it
strongly supports the conservation of the Einstein relation
D = kBT/a, naturally consistent with the fact that supercooled
water, although metastable, is still in its local equilibrium.

Fig. 2a and b show the k dependence of D B t�x1 and
D B (t/T)�x2, which can be understood as follows. The variant
D B t�1 can be exact only if particle displacement follows
Gaussian, but it does not even in a system as simple as a hard

Fig. 1 Verification of the validity of the three variants D B t�1 (a), D B T/t
(b), and D B T/Z (c), and the Einstein relation D B T/a (d). The calculated
data are represented by circles and fitted by D B t�x1, D B (t/T)�x2,
D B (Z/T)�x3, and D B (a/T)�x4, respectively. The fitted exponent x is
written in the same colour as the corresponding solid fitting line.

Fig. 2 Fitting of the k-dependent exponents x1 by D B t�x1 (a) and x2 by
D B (t/T)�x2 (b), as well as x1 vs. k (c) and x2 vs. k (d). In (a and b), the
calculated data are represented by different symbols and the fitted
exponent is written in the same color as the corresponding fitting line. In
(c and d), black circles represent x1s, x2s and red squares are x1d, x2d.
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sphere system because of the long-time tail effect,23 resulting in
the self-intermediate scattering function described by24

ln Fs(k,t) = �Dk2t + 3(2g/p)1/2Dk2(ttc)1/2 +� � � (1)

where g = 1 for a pure liquid, tc = m/a is the characteristic time
for the Brownian motion, and m is the particle mass. The first
term at the right hand side corresponds to the Gaussian case,
and the second term corresponds to the memory effect. The
contribution of the second term to t is usually smaller than the
first one, but it does alter t from Gaussian and can be omitted
only in the long-wavelength limit k-0.

The data in Fig. 2a and b can also be well fitted by two
fractional forms with a crossover temperature, and the corres-
ponding exponents with respect to more k values are shown in
Fig. 2c and d. Fig. 2c demonstrates that x1d decreases, while x1s

increases with decreasing k. Both approach 1.0 as k decreases,
which agrees with eqn (1) that D B t�1 is exact only when k-0.
Fig. 2d demonstrates that x2s approaches 1.0 as k-0 at low
temperatures, but no such trend is observed for x2d at high
temperatures, and thus the basic presumption Z = GNt in
D B T/t is only a cursory approximation. Although it sometimes
gives a consistent result with D B T/a for a specific k in a certain
temperature range, it depends severely on k and is not fulfilled
for all data.

That a is a constant is the presumption of all three SE
variants, but some studies have already suggested that it is not
a constant.9,10,13 Below we will show by considering the coordi-
nation shell structure that a in water actually varies with
temperature, instead of being a constant.

The coordination shell can be statistically depicted as a
water molecule drags the effective shells composed of sur-
rounding water molecules to move together. Here we only
consider water molecules in the first coordination shell with
an effective radius of a, which play the most important role and
form a composite along with the central water molecule. The
interplay between the central molecule and surrounding water
molecules can be described by the coordination number n and
the residence correlation time ts.

25 The coordination number
n ¼

Ð rc
0 4pr

2g rð Þdr is the average number of molecules in the first
solvation shell, and rc = 0.38 nm is the position of the first
minimum in the radial distribution function. The residence
correlation time ts characterizing the lifetime of the first
shell is calculated from the residence time correlation function
C(t) = hd(0)d(t)i by taking C(ts) = e�1, where d(t) is 1 if a given
molecule is still in the first solvation shell at time t and 0 otherwise.

A larger ts corresponds to a larger probability for the
molecules to stay in the first shell and move together with
the central molecule. The average number of water molecules
in the composite is 1 + np(ts), where 1 denotes the central
molecule and p is the probability of the first shell moving along
with the central molecule, which increases monotonically with
ts. By assuming that both free molecules and the composite are
spheres, the effective hydrodynamic radius of the composite is
roughly [1 + np(ts)]

1/3a0, where a0 is a constant representing the
effective hydrodynamic radius of a free molecule. Because the

frictional force applied to the composite BCZv[1 + np(ts)]
1/3a0

should be equal to the sum of the frictional force applied to
each molecule in the composite BCZv[1 + np(ts)]a, where v is
the velocity of the composite, the average effective hydrody-
namic radius can be described by

a � a0

1þ np tsð Þ½ �2=3
(2)

with ts being described by the Arrhenius law ts ¼ t0eEa=kBT ,
where Ea is the activation energy for a molecule to hop out of
the first coordination shell and t0 is the prefactor, and the

probability p tsð Þ ¼
eEa=kBT

eEa=kBT þ 1ð Þ ¼
ts

ts þ t0
. Eqn (2) then

becomes

a � a0

1þ nts
ts þ t0

� �2=3 (3)

Because t0 in eqn (3) is unknown, we still cannot determine
the temperature dependence of a. Therefore, we have to first
assume that Stokes’ formula is established in supercooled
water to numerically evaluate a B a/Z and rescale it by its value

at T = 390 K for the TIP5P model. The rescaled a=Z plotted in
Fig. 3a is approximately constant for T 4 280 K but starts to
decrease significantly when T o 280 K, which has the same
trend as D B (Z/T)�x3 shown in Fig. 1c and agrees with previous
observations.8,9,12 We then fit the data in Fig. 3a by eqn (3) with
t0 being a parameter to be determined. It can be seen that the
fitted curve drawn in red in Fig. 3a, which gives t0 = 269 ps,
almost perfectly matches the numerical data points.

Fig. 3b plots ts and n calculated from the simulation data. When
the temperature decreases, n decreases because of the more ordered
structure of water,7,26 while ts increases because the coupling
between molecules becomes stronger. At high temperatures, these
two factors contribute oppositely to np(ts) and almost compensate
with each other, so the change of a is approximately constant. At low
temperatures, the increase of ts is much faster than the decrease of
n, so p(ts) plays a more significant role than n, leading to a decrease
of a. The decrease of a B T/DZ with decreasing temperature has
been observed in supercooled water in previous work,9,10,13 and it
also occurs in other liquids, such as supercooled binary Lennard–
Jones liquids,27 supercooled aqueous solutions of glycerol,28

water/methanol solutions,29 ortho-terphenyl,30 and tris-naphthyl-
benzene.31 Therefore, we conclude that a indeed varies with

Fig. 3 (a) Rescaled effective hydrodynamic radius a=Z by simulation (black
line) and by fitting (red line). (b) Residence correlation time ts and
coordination number n (inset) vs. T.
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thermodynamic conditions, which allows the Stokes relation to be
valid in supercooled water.

Conclusions

We have performed atomistic MD simulations to explore the
validity of the SE relation in supercooled water with the TIP5P
model in the range of 240–390 K and the Jagla model in the
range of 30–140 K. Consistent with the fact that supercooled
water is in its local equilibrium, our results confirm the
conservation of the original SE relation in supercooled water,
even though its three variants, D B t�1, D B T/t, and D B T/Z,
all break down and in their fractional forms. The variant
D B T/Z gives rational results only when the effective hydro-
dynamic radius a can be considered as a constant. In addition,
because both x1 in D B t�x1 and x2 in D B (t/T)�x2 depend on
the wavevector, D B t�1 agrees with D B T/a only in the long-
wavelength limit, and D B T/t agrees with D B T/a only in a
certain temperature range when a specific k is chosen.
Although the three variants give similar qualitative results,
the exponents are quantitatively different from each other, so
t and tT are not good substitutes of Z. Overall, the three
variants are usually not good substitutes of the original SE
relation, and they should be critically and quantitatively eval-
uated while they are used to inspect the validity of the SE
relation. Besides supercooled water, the inconsistency between
the original SE relation and its variants may appear in many
other supercooled liquids.
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